Alan G. Porter and Martin G. Rezmer

BASIC Business Subroutines

for the

Apple Il and Ile

BASIC BUSINESS SUBROUTINES
FOR THE APPLE Il AND lle

/ BASIC \

BUSINESS

SUBROUTINES FOR
THE APPLE i

\ AND lle /

ALAN G. PORTER
MARTIN G. REZMER

v‘v Addison-Wesley Publishing Company
Reading, Massachusetts ¢ Menlo Park, California
London ¢ Amsterdam e Don Mills, Ontario e Sydney

This book is in the
Addison-Wesley Microcomputer Books
Popular Series

Cover Design: Marshall Henrichs

Apple II, Apple Ile, and Apple II Plus are registered trademarks of the Apple Computer Co.

Library of Congress Cataloging in Publication Data
Porter, Alan (Alan G.)

BASIC business subroutines for the Apple II and Ile.

(Addison-Wesley microbooks popular series)

Includes index.

1. Apple II (Computer)—Programming. 2. Apple Ile
(Computer)—Programming. 3. Basic (Computer program
language) 4. Business—Data processing. 1. Rezmer,
Martin. IL Title. IIL Series.

HF5548.4.A65P67 1984 001.64'25 83-15833
ISBN 0-201-05663-1 (pbk.)

Copyright © 1984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-05663-1
ABCDEFGHIJ-HA-8987654

PREFACE

Is there life after the Applesoft Tutorial? This book is a first step in the
quest for the answer to this question. After reading the Tutorial cover to
cover several times, you may still find it difficult to perform certain func-
tions with your Apple computer. Even though you are armed with an
understanding of how INPUT, PRINT, and FOR-NEXT work, you may still
have difficulty putting them together in a meaningful order. You know
what you want the computer to do, but you are not a professional pro-
grammer, so you do not know how to make the computer do it. In this book
we present solutions to some of the most frequently encountered
programming problems. We define what each problem is, show how to
solve it, and give an exact solution (a program) in Applesoft BASIC. We
also explain how you can modify the program for your own needs. The
basis here is to learn efficient programming techniques and good style by
example—a very powerful teaching method.

PREFACE

This book is intended for use by people with widely varying skill
levels—from the enthusiastic novice to the advanced programmer. Each
chapter will provide you with tools and building blocks to be used in
programs you will create in the future.

The material is presented in modular fashion. That is, the materials
from Chapter 2 (an input line editor) are expanded on in Chapter 3 to
create a screen editor, and so on. The end result is a set of tools that can
be used in every program you write. With these tools your programs will
be more professional and easier to use, take less time to write, and be
able to be modified easily when change becomes necessary.

Our special thanks to the following people: Carol Beal, Tom Bell,
Zach Bovinette, Kathy Cukar, Takeshi Endo, Barb Odom, Vicki Porter,
Jim Speir, Hal Tobin, Shelley Wright.

CONTENTS

Chapter 1
PROGRAMMING FUNDAMENTALS 1
Introduction 1
Subroutines: What They Are and How to Use Them 2
Programming Style 4
Writing Your Programs 8
Make the Apple Work for You 9
About the Structure of the Book 11
Chapter 2
AN INPUT LINE EDITOR FOR APPLESOFT BASIC 13
Introduction 13
Line Editor Test Routine 17
Basic Line Editor Program 20
Displaying a Cursor 33
Processing a Key 35
Processing Control Keys: Editing Routines 39

CONTENTS

User Instructions 49
Complete Line Editor Program 50
Chapter 3
SCREEN TEXT EDITOR 61
Introduction 61
Part 1: Text Editor Program 64
Screen Editor Control Character Commands 70
Summary of Part I 80
Part 2: Complete Text Editor Program 81
Command Display and Processor 82
Enhancements 96
Merging Programs by Using EXEC 96
User Instructions 97
Complete Screen Text Editor Program 101
Chapter 4
ANSWERING USER HELP REQUESTS 111
Introduction 111
Help Program 113
Pause Subroutine 118
Turning INVERSE On and Off 119
Help Test Routine 120
User Instructions 121
Complete Help Program 122
Chapter 5
A DATAENTRY SCREEN PROCESSOR 125
Introduction 125
Creating a Data Entry Screen 128
Sample Variable-Exchange Routine 130
Data Entry Program 131
Changes to the Help Subroutine 135
Subroutine for Setting the Field Parameters 136
Displaying the Original Values 138
Editing Subroutine 139
Additional Option 142
User Instructions 143
Complete Data Entry Screen Program 145
Chapter 6
A MENU SYSTEM 151
Introduction 151
Menu Program 154

CONTENTS

Explanation of Program 155
Sample Menu Screen 159
User Instructions 160
Complete Menu Program 161
Chapter 7
REPORT GENERATION 165
Introduction 165
Philosophical Considerations 166
Simple Report Generator 168
Program Features 170
Complete Report Generator Program 174
Chapter 8
PERSONAL CALENDAR: A SAMPLE PROGRAM 179
Introduction 179
Basic Calendar Program 183
User Instructions 198
Complete Personal Calendar Program 200
INDEX 223

CHAPTER 1

PROGRAMMING
FUNDAMENTALS

INTRODUCTION

This book is divided into the following subject areas:

¢ The input of data, Chapter 2,

® Data storage and manipulation, Chapters 3-6,

¢ Outputting the data, Chapter 7,

e Putting it all together, a summary exercise, Chapter 8.

Subroutines are provided that show you how to input data into the com-
puter, how to store and work with this data, and then how to output the
data to the screen or printer.

The final chapter provides a stand-alone program that summarizes
all of these techniques into a personal calendar program.

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

In this preliminary chapter we will discuss subroutines, program-
ming style and technique, and efficient methods for writing and testing
your own programs. We will also present the common structure used in

the succeeding chapters in order to prepare you for getting the most out
of this book.

SUBROUTINES: WHAT THEY ARE AND HOW TO USE THEM

Simply stated, a subroutine is a program that is used over and over again
in one program or in many programs. A subroutine can be as small as two
lines or as large as several thousand lines. In general, however, subrou-
tines are kept small so that they will be understandable and manageable.
Ideally, a subroutine will only perform one function, such as allowing
alphanumeric input from the keyboard. By performing only one function,
it will always behave as expected, and you will not be surprised by an un-
usual response. If a subroutine is to perform several functions, it can be
made up of several single-function subroutines that are nested together.

A subroutine is distinguished from a ‘“‘regular” program by two
BASIC statements: GOSUB and RETURN. A GOSUB is used by the ““call-
ing”’ program (the main or originating program) to access the subroutine,
and a RETURN is used by the subroutine, upon completing its task, to re-
turn to the calling program. Except for these two statements, a subrou-
tine is a regular BASIC program.

GOSUB-RETURN When the program encounters GOSUB, it uncondi-
tionally branches to the referenced line number. Upon encountering
a RETURN, the program branches back to the statement immediately
following the most recently executed GOSUB.

EXAMPLE

5000 GOSUB 6000
5100 PRINT X%*3

5200 END
6000 INPUT
6100 RETURN
RUN

2100

300

CHAPTER 1 PROGRAMMING FUNDAMENTALS

In this GOSUB example, when line 5000 is encountered, the program
execution sequence jumps to line 6000 and asks for the input of X%.
The number 100 is input from the keyboard (see the line following
RUN). Then execution resumes at line 5100, and the result of X% *3
(which is 300) is printed on the screen.

The reason for the existence of a subroutine is fairly straight-
forward: to make the computer do as much of your work as possible. If
you have a function in your program that is required several times, you
have the option of retyping the function in several places or typing it in
once, adding RETURN as the last line and using a GOSUB when you want
to use it. Why should you do all the work when the computer will gladly
do it at the mere typing of the command GOSUB? Subroutines serve one
additional purpose: They make the programs consistent. If the same sub-
routine is used throughout your programs, then this function will be per-
formed exactly the same way each time. You will not have to remember
the exact details of how it works everytime you wish to use it in the pro-
gram.

To visualize a subroutine, we can think in terms of any function or
action that is done repeatedly. By using a subroutine to perform this
action, we are always assured that it will be performed exactly the same
way each time we need it. Let’s use a common example to illustrate this
point. How do we start our car? A modern automobile simply requires us
to get in and turn the key. The manufacturers have created a ‘‘subrou-
tine’’ (actually, a group of subroutines nested together) to perform the re-
quired tasks for us when we turn the key. The action of turning the key
starts the subroutine chain that does the following tasks:

e Determines if the choke is needed,

e Turns on the fuel pump,

¢ Runs the electrical system checkout,
e Engages the starter.

And we are done. We get the same results everytime—unless the system
has broken down on us!

The following chapters will present a series of subroutines that you
may use in your own programs. These subroutines present only one of
many possible ways to solve the problem and may be modified for your
own requirements.

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

PROGRAMMING STYLE

We like to consider computer programming as an art form. As with all art
forms, the creator has a “‘style.” This style can determine whether the
creation is a work of beauty or something else. Some of us were not born
with enormous amounts of style; we have to study others and copy where
we can. Style also evolves with time; most of us get better as we gain ex-
perience. We rarely, however, go back to an older creation and improve
or update its style. It is therefore important to do as good a job as possible
the first time through.

The subroutines in this volume reflect our style. Some people will like
it, and others will not; but that is art. In the following subsections we sum-
marize some of the elements of our programming style. The elements of
style that are most important are those that lead to an increase in under-
standing and readability of the program. We try to adhere to them as
much as possible, but, being human, we do slip from time to time. We
hope that by studying our style, you will be able to add those characteris-
tics that you like to your own style.

Meaningful Variable Names

It will come as no surprise to you that not all variable names are mean-
ingful. Even a variable name that is meaningful to you may be totally con-
fusing to another person reading your program. Part of this problem
stems from Applesoft BASIC, which only recognizes the first two charac-
ters in a variable name. Although BASIC may consider only the first two
characters, there is nothing that restricts the use of longer names if you
keep the first two characters unique. Thus it is our convention to use as
long a name as necessary to clearly define the variable being addressed.
Sometimes, the first two characters are a little unusual, but we can still
understand what the variable is to be used for.

It is important to remember that for programs in BASIC, variables
are used by the entire program. Any variable may be assigned a value at
any point in a program, and that value can be used at any other place in
the program. This procedure is how information is passed to and from
subroutines. Before calling a subroutine, we assign values to the vari-

CHAPTER 1 PROGRAMMING FUNDAMENTALS

ables used by that subroutine. After the subroutine has completed its
task, those same variables are still available for use by the rest of the
program, even though some of the values may have changed in the sub-
routine.

Line Numbers and Subroutines

We use lots of subroutines in our programs. Since we must use line num-
bers and not labels (names) to address subroutines, how do we keep them
all straight in our mind? We do not renumber the subroutines. Once a
subroutine is created and assigned a starting line number, we keep that
line number intact. It may look nice to have an entire program evenly
numbered, but even numbering is not worthwhile if the subroutines keep
moving around. Therefore, we only renumber the main program sections
if we must; we do not renumber the subroutine sections.

Our choice of line numbers was not random. There was a plan.

First, we wanted you to be able to add these routines to existing pro-
grams, and since most people tend to use smaller-value line numbers, we
elected to use larger-value line numbers. This way our routines will not
conflict with yours

Second, by carefully selecting line numbers, we can make a program
run as fast as possible. When BASIC looks for a line number (as in
GOSUB 10000 or GOTO 11000), it first checks to see if the current line
number is larger or smaller than the one being searched for. If the cur-
rent line number is smaller, it begins the search for the desired line
beginning at the current line. If the current line number is larger, it be-
gins the search with the first line number in memory.

For example, consider the following program:

100

1000 PRINT "HELLO"
1100 GOSUB 2000
1200 GOTO 1000
2000 PRINT "RANDY"
2100 RETURN

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

When BASIC executes line 1100
GOSUB 2000

it begins the search for line 2000 at line 1200. But when it executes line
1200

GOTO 1000

it must begin searching at the first line in memory, which is line 100.

If this program were a large one, a lot of time would be wasted going
from line 100 to line 1000, simply because there are a lot of line numbers
to check. However, getting to line 2000 will be faster because there are
fewer line numbers to check. Therefore, because of this characteristic of
BASIC, we have tried to place subroutines at a line larger than the line
calling the GOSUB or GOTO. Obviously, this technique is not always pos-
sible, but it is an easy constraint to live with.

Remark Statements, or What’s This?

Most programmers fail to use enough remark (REM) statements in their
programs.

REM REM statements are nonexecuting line statements. They are used
in programs to provide notes and reminders to the original program
author and to others who may subsequently need to go back into the
program and figure out its purpose or method.

EXAMPLE
1090 REM
1095 REM
1100 REM

1105 X = 11.005 REM THIS IS A FIXED VALUE
1110 ¥ = 5.026 REM THIS IS A FIXED VALUE

1115 REM
1120 REM
1125 REM

CHAPTER1 PROGRAMMING FUNDAMENTALS

In this example lines 1090-1100 and 1115-1125 are used to isolate
what is found between them. This technique makes the program eas-
ier to read and calls attention to lines 1105 and 1110. The remarks
after lines 1105 and 1110 indicate what the values in these lines are,
where they came from, or what they are used for. In your remarks,
use any description desired to remind yourself just what these lines
are doing.

When the original author of a REMless program is gone, who will
support and modify the work? Usually, no one; the REMless program will
be thrown out and rewritten from scratch by another programmer.
Therefore it is good practice to use remark statements as much as possi-
ble to help both yourself and subsequent users of a program.

In the programs in this book we have used remark lines to separate
major sections of the program and to clearly explain, in detail, how it
works and what it does. We use remarks wherever possible in the body of
a routine to help clarify the processes it is going through. Even groups of
blank REM lines add to the clarity of a program by being used to separate
the text.

Since program branches, such as GOTO and GOSUB, use line
numbers, we use a remark with each one to clarify where the program is
going. We also often branch to a REM line that contains the meaning of
the routine.

Regardless of who you are or what your position is, the debugging of
a program is tedious. But the more remarks you have in a program, the
sooner you can fix it and get on to another program.

Multiple Statements on a Line

Most versions of the BASIC language allow you to put several program
statements on the same line, usually separated by a colon. Applesoft also
allows this procedure. In general, this technique is a poor one, and we do
not use it or recommend it, but it does enhance the execution speed of
completed programs by eliminating the need to process the extra line
numbers. Also, certain commands such as IF-THEN statements frequent-
ly require multiple commands on the same line, and they are acceptable
there. However, if the line is very long, it should probably be made into a

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

WRITING

subroutine and a GOSUB used. As far as we are concerned, only REM
statements should be tagged onto a line. So please feel free to add on
REM statements as often as you like.

YOUR PROGRAMS

Once you begin to write your own programs, your own personal program-
ming style will develop, which may be very different from ours as we
have described it so far. However, all of your programs should incorpo-
rate two important features: They should be user friendly, and they
should be tested.

User-Friendly Programs

A user-friendly program is also a programmer-friendly program. A pro-
gram is considered to be user friendly if it is understandable, predict-
able, and easy to use. If the program meets these requirements, then the
user will be friendly to the programmer. If the program does not meet
these requirements, then the user will be very unfriendly to the program-
mer. Therefore the easier it is to use your program, the happier everyone
will be.

Testing Your Programs

All programs should be thoroughly tested before they are given to users.
Testing is time-consuming; and the larger a program is, the more vari-
ables and conditions there are to test. However, you must remember that
a running program is the most essential element of a program that is user
friendly, and the only way to verify that a program works is to test it. We
readily admit that we have delivered programs that users subsequently
found errors in. Unless you spend years testing, you may never find all
the errors in your programs, but you must try to be as thorough as pos-
sible. If you test a program in steps, as it is being developed, many prob-
lems can be discovered and corrected before they become serious. It is
also beneficial to have another person test your work as you progress. A
second opinion can be very valuable.

CHAPTER 1 PROGRAMMING FUNDAMENTALS

MAKE THE APPLE WORK FOR YOU

The whole purpose in writing a program is to have the computer do some
of your work. When you design the program, think about the problems
that may arise and how they can be solved by the computer automatically
as they are encountered. Once again, user-friendly software is program-
mer friendly. This idea gets us back to the building block concept.

The building blocks we are providing in this book are intended to
make the Apple work for both the programmer and the user. The pro-
grammer benefits by being able to use ready-made pieces over and over
again, and the user benefits by having a consistent and professional pro-
gram to work with.

We suggest that you purchase a software development system or tool
kit. There are several different products available. One such product
that is an invaluable aid to development is the Apple DOS Tool Kit. It con-
tains many programs, including the Programmer’s Aid. This program can
renumber and merge programs, remove remark statements, and produce
a variable cross-reference table. This program will come in very handy
for those planning to write their own software. The new Apple Ile comes
with a merge program and a renumber program on diskette, but it lacks
the other helpful programs.

Other hints for making the Apple work for you are given in the fol-
lowing subsections.

Review the Reference Manual

Before you start reading the next chapter, we recommend that you
review two sections of the Applesoft Basic Programming Reference Man-
ual. They contain some helpful and informative suggestions. Our com-
ments on some of these points follow.

First, read Appendix D, ‘“Space Savers.” The following hints are
given there:

e Hint 1. “Use multiple statements per line.”” This technique is not a
good one. The readability of the program by you or anyone else is
greatly hindered by multiple statements on a line, making the pro-
gram much more difficult to debug.

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

10

e Hint 2. “Delete all REM statements.”” This procedure is a good idea
after the program is completely debugged.

e Hint 3. “Use integer instead of real arrays whenever possible.” A
very good idea.

e Hint 4. “Use variables instead of constants.” Another very good
idea.

e Hint 6. “Reuse the same variables.”” This procedure can be danger-
ous. If you must do it, then pick a certain combination of letters to
represent your ‘‘garbage’’ variables and use the same ones through-
out your programming.

e Hint 9. Using X = FRE(0) to houseclean old strings is a good thing to
remember and to do.

Second, read Appendix E, ‘“Speeding Up Your Program.”” The follow-
ing hints are given there:

e Hint 1. ‘“Use variables instead of constants.”

e Hint 2. “Place the most frequently used variables at the top of your
program.”’

e Hint 4. “Frequently referenced line numbers should be located as
early in the program as possible.”

These three hints can't be emphasized enough—these are the small
things that make a big difference.

Note: The Apple Ile owners will not find these same hints in their
manuals. In this case newer is not better.

Apple Il Family Differences

The introduction of the Apple Ile with the 80-column card necessitated
some changes so that this book is useful for all Apple II users. All of our
examples and test programs are formatted for 40-column screens while
at the same time working with the Ile 80-column card activated. Satis-
fying both requirements at once meant that we had to make compromises
in our programs. The FLASH command is an excellent example. This
command gives your menus and screens a very commanding presence,

CHAPTER 1 PROGRAMMING FUNDAMENTALS

but it does not work when the 80-column card is activated. If you are
working in 40 columns, you can implement FLASH in the same way as
you implement INVERSE (shown in a following chapter).

The 80-column card can also be turned on and off, and its presence
can be checked for under program control. Checking for card presence is
done by PEEKing memory location C300 and comparing the first ten bytes
found with the first ten bytes of the 80-column card ROM.

Perhaps the strongest single factor in favor of the 80-column card is
the availability of uppercase and lowercase letters. They provide the
most aesthetic screens and are highly recommended if available.

ABOUT THE STRUCTURE OF THE BOOK

The real learning experience in this book lies in the programs that are
supplied. Although individual cases may vary, probably the easiest way
to read this book is to go through the text of each chapter lightly to get a
feel for what is to be done. Then study the programs carefully and study
how each was created (recall the learning-by-example statement from
the Preface). Diagraming the flow of the program can be very helpful.
Read the text again in more detail, and then type in the program, verify-
ing your progress at each test point. Next, start your debugging pro-
cess—correcting the mistakes made in the entry of the program. By the
time the debugging is done, you will have a good feel for what we have
presented. Please enjoy yourself, and remember to back up your diskettes
as you go.

The following chapters are divided into sections such as design, user
features, and programmer features. In using these section topics, we are
trying to structure your thinking to help you create programs more effi-
ciently. Here are the points we are trying to make:

Design Define the basic program function.

User features Define specific user functions and the spe-
cial conditions to be met.

Programmer features Define specific features needed to meet
the design criteria.

11

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

As each new BASIC command is encountered in the text, we will pro-
vide a brief explanation and example. These examples are given to re-
fresh your memory only, and we suggest that you review your Applesoft
II reference manual for more detail, as needed.

The format of the program listings in the chapters that follow cannot
be precisely duplicated on the Apple II. We have taken artistic license in
the placement of the remark statements (through the use of our word pro-
cessor) to make the listings easier to read.

Many of the chapters build on one another. For instance, the pro-
gram presented in Chapter 2, the line editor, gets combined with the addi-
tional material in Chapter 3 to yield the screen editor. The following list
describes which chapters are added together to yield the new one:

Chapter 2 Stand-alone

Chapter 3 Chapters 2 + 3

Chapter 4 Stand-alone

Chapter 5 Chapters 2 + 4 + 5

Chapter 6 Chapters 2 + 4 + 6

Chapter 7 Stand-alone

Chapter 8 Chapters 2 +4 +5+6 +7 + 8

For Chapters 2 and 3 the programs are entered by using the Apple’s built-
in editing capability, which is limited and cumbersome. Once you have a
finished product from Chapter 3, you can use the resulting screen editor
to enter and debug the programs in the remaining chapters—a real time-
saving tool.

CHAPTER 2

AN INPUT
LINE EDITOR FOR
APPLESOFT BASIC

INTRODUCTION

One feature is common to almost every program: The program asks a
question and the user types in an answer. In a BASIC program you nor-
mally get the user’s answer by using an INPUT statement.

INPUT The INPUT statement requests an input from the user at the
keyboard, and the program will not proceed until the input is made.

EXAMPLE

5000 INPUT AGE%
5100 PRINT AGE%*2
RUN

234

68

13

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

14

In this example line 5000 causes the user to be prompted, by a
question mark on the screen, to supply a number for the variable
AGE% (34). Once the number is typed in at the keyboard, line 5100 is
executed, and the result (68) is printed on the screen.

The INPUT statement, however, accepts all user input, and the
Apple itself only allows rudimentary editing. The programmer tests every
entry for a valid response (i.e., a number in the proper range, or a name
with only alphabet characters), and the user reenters the information if
an error is detected. This process is repeated for every INPUT statement.

Why not have the Apple do some of the programmer’s work and at
the same time give the user some additional editing capabilities? This
task can be done with a line editor. A line editor is a subroutine that
accepts data entered on the keyboard and processes any special editing
characters entered. These characters perform such functions as insert-
ing a space or deleting a character. The line editor is also used to control
the exact characters the user is allowed to enter. For example, you could
restrict the user to entering numbers only, with no other characters
allowed, or you could ask for a simple yes or no response. Of course,
many more functions are available with a line editor.

The line editor program is one of the largest routines in this book. It
is presented first because it is used as a building block for most of the
routines in the following chapters. We have attempted to present this
routine in an understandable manner, but don’t be too concerned if you
must reread a couple of sections before understanding it.

The development of the line editor program in this chapter will pro-
gress through a discussion of the major components needed, the methods
for displaying the cursor and processing input keystrokes, some editing
routines, and finally a set of user instructions. The sections that immedi-
ately follow will review the thought processes we want you to go through
each time you consider a programming problem.

In this chapter, as in all the following chapters, you will encounter
program modules that are to be entered into your computer and de-
bugged. These modules will ultimately result in complete working pro-
grams, one for each chapter of the book.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Before writing a computer program, you must define what problem is to
be solved and exactly what you want the program to do—a task we call
design. The problem we wish to begin solving in this chapter is an un-
friendly-user interface to the computer. The INPUT statement does not
allow editing of existing text or any program control over what the user
enters. INPUT does not display the default or existing value; therefore
the user cannot edit an existing value. The solution to these problems is a
line editor.

What general characteristics should the line editor have? It should
display the original text, if any, and allow the user to edit it. Periods
should be used to show the user the maximum number of characters that
can be entered. For example, to enter a field (a piece of information the
user is entering or editing) 10 characters long, we could have the follow-
ing displays:

..........

Our line editor includes these features.

The editor should also allow the user to edit and correct mistakes in
the text. We want the computer to do some error checking for us, so the
line editor should be able to selectively control the type of data entered. It
should be able to force numeric entries, or a yes or no response, or to
accept any text. Also, since one of the most useful features of a program
is an on-line help capability, the line editor should be able to notify the
program of a user’s help request. All these features are incorporated in
our line editor program.

User Features
The specific features of the line editor can be divided into those directed

toward the user and those directed toward the programmer. We will
address the user features first.

15

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

16

It would be nice if the user could correct typing mistakes in addition
to being able to move the cursor left and right. So we implement these
editing functions:

e Move cursor left one position.

® Move cursor right one position.

e Skip to the previous word.

e Skip to the next word.

e Skip to end of line.

e Insert a character and slide the text to the right.

¢ Delete the current character and move the remaining text to the left.
e Delete text from the current character to the end of the line.

Another user feature of the line editor is that it will show one period
per allowed character on the screen; the programmer will select the
maximum allowable number of characters per field when setting up the
screen. This feature is handy, for example, when the user is working with
items such as zip code fields, where only five spaces are required, or
names, where one space is needed for a middle initial.

As mentioned, an important part of any program is the on-line help
system. The line editor supports the help system by allowing the user to
request help by striking control Q. (The help system will be presented in
detail in Chapter 4.)

Programmer Features

The programmer’s features relate to how the programmer interfaces to
the line editor. This interface should be as simple as possible, because we
do not want it to add more work in creation than it saves in entry. Thus
for the basic editor we require four pieces of information:

Screen row number where the input is to take place,
Screen column number where the input is to take place,

. A “mask” to define the type and the length of the field,
. The original text to be edited, if any.

pow o

A mask allows the programmer to specifically define what is going to
be entered and how many characters are going to be entered. That is,

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

the program tests the input and rejects any that does not meet the mask
requirement. For instance, suppose we want a zip code to be entered.
Then we will have the program accept only numerical input up to five
spaces. Nonnumeric input is rejected, and any input over five spaces is
rejected. In this case we are using a numeric-only, five-space mask.

The line editor accepts four types of input data: help request, num-
ber, yes/no, and any text. The yes/no field only accepts the letters Y or N,
and the any-text field accepts any printable ASCII character. A number
field may contain the following symbols:

~ +0123456789

A Word of Advice

Before you start to enter the first lines of the program given in the next
section, we have several suggestions.

First, it is important to type in the program with all of the remark
statements intact. The REMs will help you in the debugging of the pro-
gram, and they are also used as entry points for most of the GOSUBs.

Second, Apple has kindly included some elementary editing capabil-
ities in the Apple II computer family. Use of this built-in editing ability can
save many hours of time and frustration in the entry of the line editor pro-
gram presented in this chapter and the screen editor program in Chapter
3. The editing commands are not exactly the same for all members of the
Apple II family, so please check the following references for your specific
machine:

e Apple I and Apple II+: page 116 of the Applesoft Tutorial, middle of
the page—the ESC I, ESC J, ESC K, or ESC M.

e Apple Ile: pages 71-86 of the new Applesoft Tutorial for all of the
above plus expanded ESC commands.

LINE EDITOR TEST ROUTINE

The program segment that follows is the first program module you will
enter in your computer. This module is the first of many you will enter in
this chapter and succeeding chapters. The programs (one for each chap-

17

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

ter) are broken down into modules for two reasons. First, it is easy to
understand and enter small modules. Second, it is far easier to debug
small pieces of code than to debug large pieces.

This first module is a test program for the line editor modules pre-
sented in succeeding sections of the chapter. It allows you to define a
field at any location on the screen and then use the line editor to input

and edit.

The line editor test routine program is as follows:

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
50000
52130
60000

REM

REM LINE EDITOR TEST ROUTINE

REM ASKS FOR INITIAL CONDITIONS THEN IT
REM USES THE LINE EDITOR.

REM

HOME

INPUT "ENTER MASK ";MASK$

INPUT "ENTER TEXT ";ENTRY$

INPUT "ENTER ROW ";ROW%

INPUT "ENTER COL ";COL%

HOME

GOSUB 50000 : REM THE LINE EDITOR
VTAB 20

PRINT

IF HELP% = 1 THEN PRINT "HELP REQUESTED"
PRINT

PRINT ">";ENTRY$; "<

VTAB 24

INPUT "ENTER (CR) TO CONTINUE OR END TO EXIT ";A$
IF A3 <> "" THEN END

GOTO 60

REM

END

REM BASIC LINE EDITOR

REM DISPLAY TEXT$

RETURN : REM UNIVERSAL RETURN FOR TESTING

At the end of the test routine, note the many strange line numbers.
Each line number represents a subroutine that may be called but isn’t

18

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

written yet. By including the line number, we prevent our getting an error
message later. The RETURN on line 60000 sends the program back to the
calling program. As each routine is entered, we simply overwrite and
thus erase a line number as it is used.

TEST POINT

Test points, encountered here for the first time, will appear regularly
from now on to enable you to test each program module before adding it
to the next module. We will point out the most pertinent conditions to test
for, simplifying your debugging to small modules.

Perform the following steps after the line editor test program has
been entered:

1. Save the program on your disk.
2. Enter

RUN (CR)
where (CR) means to strike the return key.

The program should clear the screen and ask you to ENTER MASK.
Enter the desired mask and hit return. Then you will be asked for the text
to fill the mask and also for the row/column location for the display on the
screen. After you enter (CR), the process should repeat itself. When you
wish to stop going through this loop, strike control C and reset, or enter
END (CR) on the ENTER (CR) TO CONTINUE line.

It is always a good idea to provide your users with a consistent and
clean way to exit your programs. For example, in the line editor test pro-
gram you are allowed to enter the word END as a response. Terrible
problems can crop up if your users get in the habit of striking control C or
reset to exit a program. For example, if users strike reset when working
with disk files, there may be some information in the disk buffer area that

19

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

has not been saved on the disk. It will be saved only if the file is closed
properly. Therefore, striking the reset key will effectively ruin the file be-
cause it has not been updated completely.

BASIC LINE EDITOR PROGRAM

A flowchart for the basic line editor process is shown in Fig. 2.1. This
flowchart gives a general overview of the program to be developed.
Basically, the flowchart says that the programmer defines the charac-
teristics of the field to be entered and the current contents of the field.
The line editor first displays the field with periods, and then it allows the
user to enter and/or edit the field. Finally, the field will be redisplayed
and the periods erased.
The basic line editor program is as follows:

50000 REM BASIC LINE EDITOR

50005 REM

50010 REM

50015 REM THIS IS A BASIC LINE EDITOR

50020 REM

50025 REM THE PROGRAMMER CALLS IT USING THE FOLLOWING VARIABLES
50030 REM

50035 REM ROW% => SCREEN LINE NUMBER

50040 REM COL% => SCREEN COLUMN NUMBER
50045 REM ENTRY$ => TEXT TO BE EDITED
50050 REM MASK$ => DATA TYPE TO BE ALLOWED
50055 REM WHERE:

50060 REM A
50065 REM #
50070 REM Y = YES/NO FIELD

50075 REM Q = HELP REQUEST OK, USE IN ANY CHARACTER
50080 REM THE LENGTH OF MASK$ IS THE MAXIMUM LENGTH OF THE
50085 REM INPUT STRING

ALPHANUMERIC
NUMBER FIELD ONLY

It

Il

50090 REM
50095 REM
50100 PLACE%Z = 1 : REM SET THE STARTING POSITION

20

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

FIG. 2.1 Overview of line editor program

starting conditions

Programmer defines ‘

Subroutine l
start Display ENTRY$
with .'s

4
Edit the field

v

Display ENTRY$
clear .

A
RETURN

50105 REM

50110 FILLH = %" : REM DISPLAY DOTS

50115 HELP% = O : REM CLEAR THE HELP FLAG
50120 CTRL% = 0O : REM CLEAR THE EXIT FLAG
50125 GOSUB 52130 : REM DISPLAY ENTRY$
50130 GOSUB 50165 : REM EDIT THE STRING
50135 FILLE =" T : REM CLEAR THE SCREEN
50140 GOSUB 52130 : REM DISPLAY ENTRY$
50145 RETURN : REM GO BACK TO CALLER
50150 REM

50155 REM XXXXXXXXXXXXXXXXXXKXKX

50160 REM

The explanations for various parts of this program and its GOSUBs
are given in the following subsections.

21

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

22

Explanation of Variables

The basic line editor program consists mostly of REM statements
(remarks). It is always good practice, at the beginning of a subroutine, to
define who wrote it, when it was last changed, what it does, and the pur-
pose of the major variables used, as shown in the remarks in lines
50000-50160.

The variables ROW% and COL% (lines 50035 and 50040) are used
to position the text on the screen. ROW % is a number between 1 and 24.
In 40-character mode COL% is a number between 1 and 40; while in
80-character mode it is a number between 1 and 80. HELP% will be set
equal to 1 if the user requests help; otherwise, it will be set equal to 0.

The % symbol in the names means that these variables are integer
variables. An integer is a whole number between - 32,767 and
+ 32,767. Throughout this book we will use integers whenever possible.
We do so for several reasons. First, most programmers do not use integer
variables; therefore by using integer variables, we can avoid variable
name conflicts within your programs. For example, A, A%, and A$ are
all treated as individual and unique variables, even though they have
similar names. Second, integer variables require less memory space than
floating-point (decimal-point) variables, and we want the subroutines to
be as compact as possible.

FILL$ (line 50135) is the character used to illustrate the field’s
maximum length. For example, if FILL$ equals a ““.” and the field is to be
six characters long, then the line editor will display

six dots, to show the field’s maximum length.
ENTRY$ (line 50045) contains the text to be edited. If there is no text
to be edited, then ENTRY$ is cleared by the line

ENTRY$""
MASKS (line 50050) is used to define the type and the length of the

field to be edited. In the programs in this book we will use one symbol to
represent each character in the field. Thus an A will be used to indicate

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

FIG. 2.2 Field parameter examples

MASK$ DESCRIPTION
AAAAAAAAAAAAAAAAAAAA Accept any 20 characters.
AAAAAAAA Accept any 8 characters.
AAAAAAAAAAAAAAAAAAAA Accept any 20 characters.
HEHH#H Accept a 6-digit number.
HEHBHBHIHH Accept a 10-digit number.

i Allow only Y or N entry.
AAA### Accept a total of 6 characters;

the first 3 may be any
character and the last 3 must
be numeric. (For example, this
entry could be an inventory
part number.)

that any text may be entered, that is, any printable ASCII character. For
example,

MASK$ = "AAAAAAAAAAT
means ‘‘accept any character up to a maximum length of ten charac-
ters.” A # is used for numeric fields; a Y for yes/no fields. Figure 2.2 con-
tains several examples of how these various parameters are used. And,
as always, help is available to the user anytime entry is requested, no
matter what the mask definition.

Notice that we have not restricted the variable names to only two
characters, but we have tried to use meaningful names. And not just a
name meaningful today as we design the program, but one still meaning-
ful twelve months from now when we return to make further enhance-
ments.

23

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

24

TEST POINT

At this point the program is not yet functional, but it is a good idea to test
what is entered to make sure it at least returns you to the beginning of the

program. Execute the program by entering

RUN (CR)

If the program does not return you to the test routine, then verify that you

typed in the above routine correctly.

FIG. 2.3 Display subroutine

Subroutine
start

Before calling program,
must define FILL$

4

Determine length of ENTRY$
and maximum size allowed

Y
Ig

Yes
ENTRY$ too

Truncate ENTRY$

long?

No |

v
Position cursor at
ROW%, COL% and
print ENTRY$

A

Fill to end of field
with the FILL$
character

A
(RETURN

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Explanation of the Display Subroutine

The display subroutine, called by line 50125 GOSUB 52130, is flowchart-
ed in Fig. 2.3. This routine displays the text in the current ENTRY$ at the
requested screen position and the requested length of the field, using the
FILL$ character. If there is no text to display, then it will simply show one
dot for each character allowed.

FILL$ must be set before this subroutine is called. FILL$ is the
character used to show the maximum field length. Figure 2.1 shows that
the first time this subroutine is used, it displays a period; the last time it is
used, a blank or space character is used as FILL$. The space will remove
the periods and clean up the screen display.

The display program corresponding to the flowchart in Fig. 2.3 is as
follows:

52135 REM FILL$ IS THE FILL CHARACTER

52140 REM TXTSIZE% IS THE LENGTH OF ENTRY$

52145 REM MAXSIZE% IS THE MAXIMUM ALLOWED LENGTH

52150 REM

52155 REM

52160 TXTSIZE% = LEN (ENTRY$) : REM HOW LONG IS THE CURRENT FIELD?
52165 MAXSIZE% = LEN (MASK$) : REM WHAT IS THE MAX LENGTH ALLOWED?

52170 REM
52175 REM IS ENTRY$ TOO LONG?
52180 REM

52185 IF TXTSIZE% > MAXSIZE% THEN
ENTRY$ = LEFT$ (ENTRY$,MAXSIZE%):TXTSIZE%Z = MAXSIZE%

52190 REM

52195 REM POSITION THE CURSOR

52200 REM

52205 VTAB ROW% : REM ROW POSITION
52210 POKE 36, COL% : REM COLUMN NUMBER — HTAB
52215 REM

52220 REM PRINT THE TEXT

52225 REM

52230 PRINT ENTRY$; : REM NO LINE FEED
52235 REM

52240 REM PRINT THE FILL CHARACTER

52245 REM

25

BASIC BUSINESS SUBROUTINES FOR THE APPLE Ii AND lle

26

52250 IF TXTSIZE% = MAXSIZE% THEN RETURN : REM NO FILL$ TO PRINT
52255 FOR XX = TXTSIZE% TO MAXSIZE%Z - 1

52260 PRINT FILL$;

52265 NEXT XX

52270 RETURN : REM ALL DONE
52275 REM

52280 REM ¥XXXXXAARRRXXKKRRRKR¥K

52285 REM

The display subroutine starts by using the LEN (LENgth) command
(lines 52160 and 52165) to determine the length of ENTRY$ and MASKS.

LEN The LEN command returns the number of characters contained in
the referenced string as an integer value between 0 and 255.

EXAMPLE

5000 A$ = "HAPPY DAYS"
5100 PRINT A$;LEN(A$)
RUN

HAPPY DAYS 10

As the example shows, the number of characters and spaces in A$,
HAPPY DAYS, is equal to ten.

Remember that the length of MASKS$ is the maximum length of the
field.

Next, a test is made in the display program (line 52185) to see if
ENTRYS$ is larger than MASKS$. This test can only occur the first time the
line editor is called, because the editor will not allow the user to enter too
many characters. If ENTRYS$ is too long, then the editor will truncate the
extra characters.

After ENTRY$ fits into the allotted space, the cursor is positioned
and ENTRYS is printed (lines 52205, 52210, and 52230). Finally, a FOR-

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

NEXT loop (lines 52250 through 52265) is used to fill the remainder of the
field with the FILL$ character.

FOR-NEXT The FOR-NEXT looping command executes the statements
after the FOR statement until the NEXT statement is encountered.
Then the counting variable is incremented, and the process is re-
peated until the counting variable reaches the maximum value de-
sired. Once the maximum value is reached, program execution pro-
ceeds to the statement following the NEXT. A STEP statement can
also be used in a FOR-NEXT loop to increment the loop in values
other than 1 (the default value).

EXAMPLE

5000 FOR I =1T05
5100 PRINT I

5200 NEXT

RUN

1

2

3

4

5

In this FOR-NEXT loop we simply count up from 1 to 5 by ones.

EXAMPLE

5000 FOR I =1 TO 20 STEP 5
5100 PRINT I

5200 NEXT

RUN

1

6

11

16

This FOR-NEXT loop counts up in intervals of five.

27

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

28

EXAMPLE

50000 TFOR I = 10 TO 4 STEP —1L
5100 PRINT I

5200 NEXT

RUN

=
o

P DWW PSseU Oy N0

This example shows how to count down by using a negative step.

At this point in the display subroutine, we have positioned ENTRY$
on the screen and shown the field’s maximum length.

Variables such as X, XX, and Y (see line 52255) are ‘‘garbage’’ var-
iables. That is, they have only immediate meaning and may be changed by
any routine. They are used to count loops and to temporarily hold values.
Remember that garbage variables are not used by a subroutine that you
call. Always use a unique name if you want to make sure that the var-
iable remains unchanged by subroutines.

TEST POINT

The display program is the first subroutine that really does someting; it
displays any preexisting text and a dot to indicate the number of allow-
able characters. How do you select a series of tests to perform? Exper-
ienced programmers test the extremes of a subroutine. Programs tend to
be stable in the midranges of their operation but may fail at the extremes
of their operations. The best way to illustrate what is meant by this state-
ment is to look at what tests should be performed on this subroutine.

Take a moment now and think about what tests you might perform.
Although this routine is simple, there are a number of extremes that need
to be tested. First, identify the important variables used in this subrou-
tine. They are as follows:

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

ENTRY$ Text field

MASK$ Field type and length
ROW% Screen row number
COL% Screen column number

Next, identify the extreme values for each of these variables:

VARIABLE TEST EXTREME

ENTRY$ Length = 0 (i.e., null field)
Length = length of MASK$
Length > length of MASK$

MASK$ Length = 1

Length = screen width
ROW% Line 1

Line 24
COL% First column

Last column

Since this subroutine is to be controlled by the programmer, certain
extremes that will cause an error condition have been intentionally ig-
nored. These errors occur if ROW% or COL% point to locations off the
screen, as when one or both are equal to 0, or when ROW% > 24 or
COL% > screen width. Also, if MASKS$ is a null string, an error will
occur. If you find yourself being forgetful, then you can add simple tests
before line 50100 in the basic line editor program to verify that ROW %,
COL%, and MASK$ have valid values. The meaning of ‘“‘extremes”
should become apparent to you as you read through the above list.

Make sure that the routine works properly for all ENTRY$ text fields.
Test it with no text, too much text, and the maximum accept-
able amount of text. Additionally, be sure to test those combinations of
extremes that appear to be extreme extreme cases—for example,
ROW% = 24, MASKS$ length = screen width, and ENTRY$ > MASK$
length.

Note that the editor described in this chapter is not a “‘wraparound”
editor—it is a line editor. If the input string goes beyond the last column
of the screen, some commands, such as DELETE TO END OF LINE, will
give strange results. Keep the limits of the program in mind during your
testing and experiment with them.

29

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

30

Explanation of the Edit Subroutine

The flowchart shown in Fig. 2.4 describes the process for editing the
field. This subroutine is called by line 50130, GOSUB 50165, in the basic
line editor program. The flowchart details the following sequence of
events: Position and display a cursor over the first character in the field.
Next, accept a single character from the keyboard, process it, and then
get another one. When a RETURN is entered, or if a help request is made,
then return to the calling program.
Here is the program that edits the field:

50165
50170
50175
50180
50185
50190
50195
50200
50205
50210
50215
50220
50225
50230
50235
50240
50245
50250
50255
50260
50265
50270
50275
50280
50285
50290

REM EDIT THE ENTRY$ FIELD

REM

REM POSITION THE CURSOR

REM

VTAB ROW% : REM VERTICAL POSITION
GOSUB 52000 : REM PRINT THE CHARACTER IN INVERSE
REM

REM ACCEPT A KEY FROM THE KEYBOARD

REM

KEY% = PEEK (49152) : REM TEST FOR INPUT

IF KEY% < 128 THEN GOTO 50210 : REM LOOP UNTIL ENTRY
REM

REM IF HERE THEN A KEY PUSHED

REM

XX = PEEK (49168) : REM CLEAR KEYBOARD

KEY% = KEY% — 128 : REM STRIP OFF FLAG BIT
REM

REM PROCESS THE KEY

REM

GOSUB 50295 : REM KEY% PROCESSOR

IF HELP% > O THEN RETURN : REM HELP REQUESTED BY USER
IF CTRL% > O THEN GOSUB 52070: RETURN : REM CONTROL KEY EXIT

GOTO 50210 : REM GET THE NEXT KEY
REM

REM ¥XXXXAXRKKRK KKK K KKR KX KKK XXX

REM

VTAB (line 50185) is used to position the cursor on the correct
screen row.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

FIG. 2.4 Subroutine for editing the field

Position the cursor on
the first character
and display cursor

»
>

y

Accept a single key
from keyboard

y

Process the key

VTAB The VTAB command places the cursor on the specified line with-
out changing the horizontal position.

EXAMPLE

VTAB 10

This command moves the cursor to row 10.

PEEK (see lines 50210 and 50235) is used to accept characters from
the keyboard. PEEK returns the numeric value of a memory location; it
can return a value between 0 and 255. You may recall that the Apple
uses eight-bit memory, named bit 0 through 7. Bit 0 is the low bit, and bit 7

31

gz | mmmv @ E :i mt_ @ mi | i m_ E @ g 1e _ B
Taal o -/ ol ¢l / T e[Taa| o[-[o[& /[[1s| M| 4
m% sez| ezz] |ooz| |oer ver| lest| [zer] lemr] o] [ws] 8] 29| |ov] oe| [wt] Sl
T~ "u| v| N[<[| [os] ~[ul v[N <[- S il s
Mﬁ \.\.mi Zﬁ_ moi m@ mi @ :i mN; mc\; m\i E ﬁi op mu_ B i ——
I { w [W = - w4 w [W= N yo | FOIL
=1 . ‘ ﬂ 3
yAYA 9€2 0zZz v0Z 881 FA 9G1 ov1 vel 801 6 9/ 09 1474 8¢ Zl
]l o]] (] ol o] o]] g |
162 GE? 612 £02 L81 141 GGl 6€1 €1 401 16 GL 66 %4 VA A T
:_m‘ _« ‘ﬁ_x;%.\rﬁ osd | A? ﬂ{f fux fu+ me w> 1ot | 4
cz] [w _ _ o, TSt z 901 06 ve| |es| |z oz| ot e
R R T ST T N CRCNCNC R CIR TN P
6%2C £€T 412 102 G81 691 £G1 LET bl Gor 68 €L LS 184 GZ 6
bl] Ja] o] o]]] ol]]] o] (] o] o |
m_\ Nmi \wﬂN WOON i \E @ 2S1 @ 0zt vOL‘ mﬁ B ﬁ Ov; & B |
x gl x[H[e[) N[sa| x[ul x[H[8)[N[ocg| 000t 8
VA 24 ﬁWN c1z mmﬁ‘— £81 h.@‘ﬁ B 161 GET 1M~ﬂ €01 L8 _ | 74 Tmm 6€ MN £
alfq Ao 4. ,me 3Lm LaLc LbL \L \lq_mm BREL | 4
9% 0€z i A%4 861 z81 991 0S1 PEL 811 201 98 0L 14 8¢ VA A 9
L\,\F A d mfﬁ% 2l b L>f} >LmL©LVwL °l oo
g mNN_ € .61 18 G991 6%1 40 1T 10T c8 69 €6 LE 4 4
o] o]] [o] o] o] la] o] o] (5T | o |
wm_ mNL‘ 712 @m;‘ logt| [pot ;@ 3 ‘m:_ ooﬁ_) i E m_ & oN\— b _1 =
s e[u| al #[g[%a el e[1] a| y[¢$[%oa[|00 ¥
@ NNN— ITZ mm:— 641 €91 WM_ amﬂ_ mﬁ; E mm\— E Am\i mm; 61 B - =
s o] sl o € #[ea[[s[o[s[o €] #|¢tua b M
vN‘vN* JWNN% Om_ WmL 81 yNw—— Ov\; Om;_ vﬁﬂl_ 86 _ leg & Om% vm_ 81 N\— o)
- o al W] @] 2| wl®al [T afa[¥ 4] z[.[ed[W &
1%2 GZ¢ 602 €61 VAN 191 528 621 €11 L6 18 G9 6% €€ LT 5
B @wFL@,fwfﬁ\. ‘Loo{‘_ p@\r ;.o v f_m Loo_ el B
0¥z {244 802 761 9.1 091 14748 871 /444 96 08 ¥9 8% ¢E 91 0
R N O N O M CiCig g
ITIT | OTTT | TOTT OOLT | TTOT | OTOT | TOOT | 000T | TTT0 | OTTO | TOTO | 00TO | TT00 | 0T00 | 1000 | 0000 Zmﬁm .x.mm
iz | alolalv]selselz]o c | v | £ | 2 1o xmm

- 88p0J0 J8j0BIBYD J[DSV §°2 "DId

32

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

is the high bit. In the Apple, text information is stored in ASCII format
(see Fig. 2.5). There are only 128 ASCII characters; therefore bit 7 is not
used when describing an ASCII character.

The Apple keyboard is located at memory address location 49152, If
a PEEK is made of this location, then the value of the last key entered will
be returned. The Apple informs you that a key is entered by setting bit 7
equal to 1 and bits 0 through 6 equal to the ASCII value of the key en-
tered. Whenever bit 7 is equal to 0, no key input has been received from
the keyboard. In other words, if the PEEK returns a value greater than
128, then a key has been entered; if the value is less than 128, no key has
been entered. Once a key is entered and accepted, Apple considers it the
program’s responsibility to inform the Apple that the key has been re-
ceived and that another key may be entered. This information is given by
PEEKing address 49168; this procedure will set bit 7 back to 0 until an-
other key is entered.

The following sample routine is provided to let you experiment with
and to help you fully understand the keyboard PEEK routine just dis-
cussed. Type it in and experiment by running this routine by itself.

10 KEY% = PEEK (49152)

20 PRINT KEY%

30 IF KEY% < 128 THEN GOTO 10
40 XX = PEEK (49168)

50 KEY% = KEY% — 128

60 PRINT KEY%, CHR$(KEY%)

70 INPUT "ENTER CR";A$

80 GOTO 10

You might experiment and delete line 40 to see what effect this action
will have.

DISPLAYING A CURSOR

In order for the user to know what character is being edited, the current
cursor position must be displayed. In the field-editing program (line
50190, GOSUB 52000) the current character is displayed in inverse

33

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

34

video. When there is no character to display, then a space is used. A
space is a bright box when displayed in inverse.
The following program will print a character in inverse:

52000 REM PRINT CHARACTER IN INVERSE
52005 REM THIS GIVES THE ILLUSION OF CURSOR MOVEMENT

52010 REM

52012 VTAB ROW% : REM POSITION CURSOR

52015 POKE 36, (COL% + PLACE%Z — 1) : REM HTAB

52020 INVERSE : REM REVERSE VIDEO

52025 XX$ = MID$ (ENTRY$,PLACE%,1) : REM MOVE FOR THE NEXT IF
52030 IF XX$ = "" THEN XX$ = " " : REM IF NULL MAKE IT A SPACE
52035 PRINT XX$; : REM PRINT THE INVERSE

52040 NORMAL : REM RESTORE TO NORMAL VIDEO

52045 POKE 36, (COL% + PLACE% — 1) : REM REPOSITION THE CURSOR - HTAB
52050 RETURN

52055 REM
52060 REM %¥%X¥XXXKRXKKKKRKRKX KR X
52065 REM

PLACE% is used to keep track of the current cursor position. How-
ever, PLACE% could have been set by the calling program. For example,
if we wanted to begin editing at the end of a field instead of the beginning,
we would set PLACE% equal to the length of the field instead of 1.

After the cursor is positioned over the current character, using a
POKE (line 52015), the INVERSE command is given (line 52020) and the
character is printed. A NORMAL command is given (line 52040), and
then the cursor is repositioned over the character (line 52045).

PRINT The PRINT command causes a line feed (increments one line)
when encountered without option parameters. With options, the val-
ues of the list following the PRINT command are evaluated and
printed.

INVERSE The INVERSE command causes all subsequent characters to
be printed as black letters on a white background instead of the nor-
mal white on black.

NORMAL The NORMAL command negates the preceding command and
restores the video to the regular white-on-black mode.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

TEST POINT

The print-in-inverse subroutine displays the cursor. After the line editor
displays the text field to be edited, it positions the cursor over the first
character. If there is a character in the first position, it will be shown in
inverse; otherwise, a bright block will be shown.

PROCESSING A KEY

Subroutine GOSUB 50295 (line 50260 of the field-editing program) is used
to display or process the key pressed by the user. A key can be either a
control, a special character, or regular text.

Control characters are used for editing the text and moving the cur-
sor. A control character is produced by holding down the CTRL (control)
key while simultaneously pushing any letter key, A through Z. From Fig.
2.5 we see that the ASCII value of control A is 1, while the ASCII value of
letter A is 65. Similarly, the ASCII value of control Z is 26, while the letter
Z is represented by the value 90. The ESC (escape) key is a special key
that has an ASCII value of 27.

The program that tests for a control key is as follows:

50295 REM TEST FOR CONTROL KEY

50300 REM

50305 IF KEY% < = 31 THEN GOSUB 51000: RETURN: REM PROCESS AND RETURN
50310 REM

50315 REM MUST BE AN ALPHANUMERIC

50320 REM

50325 REM TEST THE MASK TO DETERMINE DATA TYPE

50330 REM

50335 IF MID$ (MASK$,PLACE%,1)
50340 IF MID$ (MASK$,PLACE%,1)
50345 IF MID$ (MASK$,PLACE%,1)

"A" THEN GOSUB 50900: RETURN
"#" THEN GOSUB 50390: RETURN
"Y" THEN GOSUB 50440: RETURN

Il

50355 REM

50360 REM BAD MASK CHARACTER

50365 REM

50370 RETURN

50375 REM

50380 REM ¥XXXAXXRXXRXRKXXKKAKKRKRAKKR KX
50385 REM

35

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

36

If the user presses a control or special key, a branch is made to the
control character subroutine, GOSUB 51000 (line 50305). If any other key
is pressed, the program checks this character to see if it is acceptable.

MIDS$ (lines 50335 through 50345) is used to determine the data type
defined in MASKS$. Then a branch is made to the appropriate character-
checking subroutine.

MID$(A$,N,X) The MID$ command returns the character string start-
ing at N in the string A$ for X characters. If X is not present, then the
program continues until the end of the string is reached.

EXAMPLE

5000 AP = "HAPPY DAYS"
5100 PRINT MID$(A$,7,3)
RUN

DAY

In this example of MID$ we count seven characters into A$ and ex-
tract the next three characters encountered. The result is that DAY
is extracted from AS$.

As an example, suppose that in the line editor program we are
viewing the first character position, and MASKS$ is defined as

MASK$ = "AAAAAAAAAAT

Then the branch is made to subroutine 50900, the universal-character-
accept routine. In contrast, if MASKS$ is

MASK$ = "H#H#"

then the branch is made to subroutine 50390, where a check verifies that
a number has been entered. When a number is entered, it will be added
to ENTRY$ and displayed; otherwise, it will be ignored. These tests occur
in lines 50335-50345, but the subroutines called in these lines have not
been presented yet.

In our version of the editor only five different data types are allowed.
You can add other branches to this routine if more data types are
desired. For example, Apple Ile users may wish to have a mask that con-
verts all lowercase letters to uppercase.

Additional features of processing a key are illustrated in the follow-
ing subsections.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Processing the Input Keys

After a key is pressed, the program must determine whether it is a con-
trol key (character) or an alphanumeric key. If it is a control character,
then the routine must decide whether it is a valid character, and, if so,
perform the required action. If it is not a control character, the mask

FIG. 2.6 Flowchart for accepting a character

Subroutine
start

Is Perform
this a control it a valid requested
key? action
No No |]
\4
RETURN
y
Valid No ——
MASK$?
Yes
v ‘ ‘ ‘
Alphanumeric Help Yes/no Number
field field field field

Is it a
valid key for
MASK$?

A4

Display the Add it to Shorten ENTRY$
. > . RETURN
character ENTRY$ if too long

37

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

50900
50905
50910
50915
50922
50925
50926
50930
50932
50935

50936
50940
50945
50946
50950
50955
50960
50965
50970
50975
50980
50985
50990

38

character must be checked and the character-type test performed. If a
valid character has been entered, then it is added to ENTRY$ and dis-
played on the screen. This process is flowcharted in Fig. 2.6.

Character-Accept and Display Routines

When a valid character is entered, it is added to ENTRY$ and displayed
on the screen. Then the cursor is moved right one position.

There are several tests that must be performed in the character-
accept routine. First, a check is made to see whether the insert mode is on
(INSERT% = 1);if it is, a space is inserted before the character is added.
Second, a check is made to determine how to add the character; there are
different ways to add the character depending on where the character is
to go. Finally, a check is made to see whether the new field is too long; if it
is, it must be truncated to MAXSIZE %.

The test program to check for an alphanumeric field is as follows:

REM PRINT KEY% AND ADD TO ENTRY$
REM
IF INSERT% = 1 THEN GOSUB 51315 : REM INSERT A SPACE
TXTSIZE% = LEN (ENTRY$) : REM MAKE SURE WE HAVE CORRECT TXTSIZE%
REM ADD TO END OF ENTRY
IF PLACE% > TXTSIZE% THEN ENTRY$ = ENTRY$ + CHR$ (KEYZ): GOTO 50945
REM ADD AS FIRST CHARACTER
IF PLACE% = 1 THEN ENTRY$ = CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1): GOTO 50945
REM ADD AS LAST CHARACTER
IF PLACE% = TXTSIZE% THEN
ENTRY$ = LEFT$(ENTRY$,PLACE% — 1) + CHR$(KEY%): GOTO 50945
REM ADD IN THE MIDDLE SOMEWHERE
ENTRY$ = LEFT$(ENTRY$,PLACE% — 1) + CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1)
TXTSIZE% = LEN (ENTRY$)
REM IF TOO BIG TRUNCATE IT
IF TXTSIZE% > MAXSIZE% THEN ENTRY$ = LEFT$ (ENTRY$,MAXSIZE%)
REM
REM NEED TO MOVE RIGHT ONE PLACE
REM
GOSUB 51425 : REM RIGHT ARROW
RETURN
REM
REM KAEXXAKRKR KR EX KK KKK KRR KX RK XK
REM

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

The programs for the other two data tests—yes/no field and number
field—are listed next.

50390 REM ACCEPT A NUMBER

50395 REM
50400 REM TEST TO SEE IF IT IS A VALID NUMERIC TYPE OF CHARACTER
50405 REM

50410 IF (KEY% < 45) OR (KEY% > 57) THEN RETURN : REM BAD KEY
50415 IF KEY% = 47 THEN RETURN : REM BAD KEY ALSO

50420 GOSUB 50900 : REM GOOD KEY SO ACCEPT IT
50425 RETURN

50430 REM ¥X¥XXXKEXRRKKREER R XX KK KR KRR R KRR RRRRKKK

50435 REM

50440 REM TEST FOR YES OR NO

50445 IF (KEY% < > 89) AND (KEY% < > 78) THEN RETURN : REM BAD KEY
50450 GOSUB 50900 : REM ACCEPT IT

50455 RETURN

50460 REM ¥XXXXXXXEREEXXXX XXX EEXXXX XX XXX X XXX X

For each data type, if KEY % is in the correct range, then a valid key
has been entered. If a bad key is entered, then the routine RETURNSs and
the key is effectively ignored. If a good key is entered, then the routine is
called that places the character into the field.

PROCESSING CONTROL KEYS: EDITING ROUTINES

The line editor uses control characters to move the cursor and edit the
text. These characters are summarized in Fig. 2.7. The letter selections
are arbitrary. If you do not like them or if another program on your com-
puter uses different characters, you may redefine them to be consistent.

The right and left arrows, control U and H, respectively, are used to
move the cursor right and left. In our editor the right arrow key will not
erase the characters as it passes over them. Control A is used to skip to
the previous word. Control D is used to delete a character and compress
the field. A character may be inserted into the middle of text by using a
control F to turn the insert mode on. The insert mode is kept on until any
control character is entered, including a control F. A control N is used to
jump to the end of the line. Control W is used to skip to the next word, and
control Y will delete everything to the right of the cursor.

39

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

FIG. 2.7 Control characters

Control A Skip to the previous word.

Control D Delete this character and compress the line.
Control F Insert a character into the line.

Control N Skip to the end of the line.

Control Q HELP request at any time.

Control W Skip to the next word.

Control Y Erase to the end of the line.

Right arrow Move right one character.

Left arrow Move left one character.

Subroutine 51000 in the program that follows uses conditional IF
statements to branch to the editing routines. To add new editing features,
you would simply add more conditionals and insert the code in the space
before line 52000.

The following subroutine processes the control keys. The individual
editing routines for the various control characters are described in the
succeeding subsections.

51000 REM PROCESS A CONTROL KEY

51005 REM
51010 REM EXIT KEYS SUCH AS RETURN SET CTRL%
51015 REM
51020 REM

51025 REM A~A =1 > PREVIOUS WORD
51030 REM 4D = DELETE THIS CHARACTER
51035 REM

~
\%

51040 REM AF =6 > FILL WITH A SPACE
51045 REM AH =8 > LEFT ARROW

51050 REM AN = 14 > SKIP TO END

51055 REM AQ = 17 > HELP REQUEST
51060 REM AU = 21 > RIGHT ARROW

51065 REM AW = 23 > NEXT WORD

40

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

51070 REM AY = 25 > ERASE TO END
51075 REM IGNORE ALL OTHER KEYS

51080 REM

51085 CTRL% = O : REM CLEAR EXIT FLAG
51090 IF KEY% = 6 THEN GOSUB 51280 : RETURN : REM INSERT
51095 INSERT% = O : REM TURN INSERT OFF
51100 IF KEY% = 1 THEN GOSUB 51555 : REM PREVIOUS WORD
51105 REM

51110 IF KEY% = 4 THEN GOSUB 51210 : REM DELETE

51115 REM

51120 IF KEY% = 8 THEN GOSUB 51380 : REM LEFT ARROW
51125 REM

51130 IF KEY% = 13 THEN CTRL% = 1 : REM RETURN KEY
51135 REM CHECK HELP REQUEST
51140 IF KEY% = 17 THEN HELP% = 1 : RETURN : REM HELP REQUEST

51145 REM

51150 IF KEY% = 14 THEN GOSUB 51680: REM GOTO END
51155 REM

51160 IF KEY% = 21 THEN GOSUB 51425: REM RIGHT ARROW
51165 REM

51170 IF KEY% = 23 THEN GOSUB 51475: REM NEXT WORD
51175 REM

51180 IF KEY% = 25 THEN GOSUB 51630: REM ERASE TO END
51184 IF KEY% = 27 THEN CTRL% = 27 : RETURN : REM ESC

51185 REM

51190 RETURN

51195 REM

51200 REM ¥¥¥XXKAXKKKXKRHKKKKKKRKKKAKKKR K
51205 REM

Moving the Cursor Right and Left

The right and left arrow subroutines, which are presented below, are
very simple. First, the program redisplays the current cursor position in
normal video. Next, it increments or decrements PLACE%, and then it
displays the new cursor position in inverse video. Notice in the program
that follows that both routines test the size of PLACE% and that it is
changed only if it meets the boundary condition.

ad

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

42

51380 REM LEFT ARROW

51385 REM
51390 GOSUB 52070 : REM DISPLAY NORMAL
51395 IF PLACE% > 1 THEN PLACE% = PLACE% — 1: REM MOVE LEFT ONE
51400 GOSUB 52000 : REM DISPLAY INVERSE
51405 RETURN
51410 REM
51415 REM ¥¥X¥XXERXXERKKERR KKK KRR KK KRA XXX KX
51420 REM
51425 REM RIGHT ARROW
51430 REM
51435 IF MID$ (ENTRY$,PLACE%,1) = "" THEN RETURN
51440 GOSUB 52070 : REM DISPLAY AS NORMAL
51445 IF PLACE% < MAXSIZE% THEN PLACE% = PLACE% + 1
51450 GOSUB 52000 : REM DISPLAY AS INVERSE
51455 RETURN
51460 REM
51465 REM ¥X¥¥ XXX XXX KEXRKRRRRRXRRRKKKRX
51470 REM
TEST POINT

Enter some text, then enter the left arrow. The cursor should move left
one position each time you strike the key. Continue striking the left arrow
key until you have returned to the beginning of the field. Now strike the
left arrow a couple of times just to make sure it works properly in the first
character position. Test the right arrow by striking it until you have gone
to the end of the field.

Jump to the Next Word

Skipping to the next word on the line moves the cursor to the first charac-
ter of the next word, to the right of the current cursor position. To do this
operation, the program looks at each character to the right of the cursor
and stops at the first one after the next space or group of spaces. If the
cursor is positioned over a word, then it must move right to the first space
and then over the spaces to the first nonspace.

The following routine allows the user to skip to the next word:

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

51475 REM SKIP TO NEXT WORD

51480 REM

51485 REM

51490 IF PLACE% = > TXTSIZE% THEN RETURN : REM ALREADY AT END

51495 GOSUB 52070 : REM REMOVE CURSOR

51500 PLACE% = PLACE%Z + 1 : REM LOOK FOR FIRST SPACE

51505 IF PLACE% = TXTSIZE% THEN GOTO 51530

51510 IF MID$ (ENTRY$,PLACE%,1) < > " " THEN GOTO 51500: REM IS IT A SPACE?
51515 PLACE% = PLACEZ + 1 : REM MOVE RIGHT ONE

51520 IF PLACE% = TXTSIZE% THEN GOTO 51530

51525 IF MID$ (ENTRY$,PLACE%,1) = " " THEN GOTO 51515: REM SKIP OVER SPACES
51530 GOSUB 52000 : REM DISPLAY CURSOR

51535 RETURN

51540 REM

51545 REM X¥XXXXXXXXRAARRRRXXXK XXX KX KRR RKRK

51550 REM

TEST POINT

Enter the sentence:

"PHIS IS A TEST."

Now use the left arrow to move to the front of the line. Enter a "W and the
cursor should jump to the front of the next word. Try this exercise with
several sentences and vary the number of spaces between words.

Jump to the Previous Word

To skip to the previous word, we first want to force the cursor to move
over any spaces, in case we are at the front of a word, and then stop at
the character to the right of the next space. The following program
performs the skip to the previous word:

31555
51560
51565
51570

REM SKIP TO PREVIOUS WORD

REM
IF PLACE% = 1 THEN RETURN : REM AT THE FRONT ALREADY
GOSUB 52070 : REM REMOVE CURSOR

43

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

51575 PLACE% = PLACE%Z - 1 : REM LOOK FOR SPACE
51580 IF PLACE%Z = 1 THEN GOTO 51610: REM FORCE MOVE AT LEAST ONE SPACE
51585 IF MID$(ENTRY$,PLACE%,1) = " " THEN GOTO 51575: REM SKIP OVER SPACES
51590 PLACE% = PLACEZ — 1
51595 IF PLACE% = 1 THEN GOTO 51610
51600 IF MID$(ENTRY$,PLACE%,1) < > " " THEN GOTO 51590: REM IS IT A SPACE?
51605 PLACE% = PLACEZ + 1 : REM POSITION OVER FIRST LETTER
51610 GOSUB 52000 : REM DISPLAY THE CURSOR
51615 RETURN
51620 REM
51625 REM ¥X¥¥XXXXAXXXRXXKAXRKX XXX KRR RRKK
TEST POINT

Enter the sentence:

"PREVIOUS WORD TEST."

Then enter a "A and the cursor should move left one word. Repeat the
tests you just did for jumping to the next word.

Jump to End of Line

We can skip to the end of the line by testing the length of the field and
moving the cursor there. The following program gives the routine:

51680 REM SKIP TO END OF LINE
51685 REM
51690 GOSUB 52070 : REM MOVE THE CURSOR
51695 PLACE% = LEN (ENTRY$) + 1
51700 IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%: REM DO NOT GO PAST END
51705 GOSUB 52000 : REM SHOW THE CURSOR
51710 RETURN
51715 REM
51720 REM ¥¥XXAXXXXRRXXRRRRNRK
51725 REM
TEST POINT

After you enter some text, move the cursor left and enter "N. The cursor
should jump to the end of the line.

44

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Deleting a Character

The delete subroutine uses MID$ and LEFT$ commands to compress the
field, and then it displays the new text with the cursor. In the delete
program that follows you will note that there are several conditional
tests. These tests check for special circumstances at the boundaries of
the subroutine. Many routines require special handling at the minimum
or maximum points of the routine. In this case the special handling is
needed when the cursor is at the very beginning or end of the field.

As you develop programs, you should carefully design and test the
boundaries or extremes of the routine, because most errors will occur at
the boundaries and not in the middle range of a routine. For example, fill-
ing a disk or initializing a file are common boundary conditions that can
cause problems. While you may not always be able to think of every pos-
sible error condition, you can generally think of the limits of a routine so
that they can be tested.

The delete subroutine is as follows:

51210 REM DELETE AND PACK
51215 REM
51220 TXTSIZE% = LEN (ENTRYS$)
51225 IF TXTSIZE% = O THEN RETURN : REM NOTHING TO DELETE
51230 IF TXTSIZE% = 1 THEN ENTRY$ = "":PLACE% = 1:GOTO 51250: REM DELETE LINE
51235 IF PLACE% = 1 THEN ENTRY$ = MID$ (ENTRY$,2): GOTO 51250
51240 IF PLACE% > = TXTSIZE% THEN
ENTRY$ = LEFT$(ENTRY$,TXTSIZE% — 1):PLACE% = PLACE% — 1:G0TO 51250
51245 ENTRY$ = LEFT$ (ENTRY$,(PLACEZ — 1)) + MID$ (ENTRY$,PLACEZ +1)

| |

51250 GOSUB 52130 : REM PRINT NEW STRING
51255 GOSUB 52000 : REM PRINT INVERSE
51260 RETURN

51265 REM

51270 REM X% XXAXXERXRERKXRXRXK KRR KRR X¥%

51275 REM

TEST POINT

At this point you should be able to enter text and move the cursor back
and forth. To test the delete routine, enter some text and then delete a
character at the following positions:

45

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

1. Cursor on the first character,
2. Cursor in middle of text,

3. Cursor on last character,

4. Cursor past end of text.

Inserting Characters

Characters are inserted by an insert mode toggle. In other words, we
turn, or toggle, the insert mode on or off. The control F key is used to turn
the mode on, and this or any other control key can be used to turn the
mode off.

Once the insert mode is turned on, any regular characters typed will
be inserted into the field, with any characters to the right of the cursor
being shifted to the right one place for each character inserted. Any
characters at the very end of the field will spill off into that never-never
land of lost characters.

The actual insertion is done by first inserting a space into the field
and printing the line. Next, the desired character is written over this
space. Finally, the cursor is moved right one place. The LEFT$ command
is essential in this routine.

LEFT$ The LEFT$(A$,N) command returns the character string start-
ing at the left end of A$ for N characters.

EXAMPLE

5000 A$ = "HAPPY DAYS"
5100 PRINT LEFT$(A$,4)
RUN
HAPP

In this example of LEFT$ we take the character in A$ starting at the
leftmost position and count to the right four positions and stop. In this
case the results are HAPP.

Any characters pushed off the end of the field are lost. A variation
you could implement is to allow insertion only until the field is full and
then stop. If users did not want the characters at the end, they would
have to move the cursor there and erase them.

46

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

The program for inserting characters is as follows:

51280 REM TOGGLE THE INSERT MODE

51285 REM

51290 IF INSERT% = 1 THEN INSERT% = O: RETURN : REM TURN IT OFF
51295 INSERT% = 1 : REM TURN IT ON

51300 RETURN

51305 REM ¥¥XX¥KXXXXXXXRERARRRK KKK KXRKKRKR KR KK

51310 REM

51315 REM INSERT A SPACE

51320 REM

51325 REM

51330 REM IS IT THE FIRST CHARACTER?

51335 IF PLACE% = 1 THEN ENTRY$ = " " + ENTRY$: GOTO 51350
51340 REM INSERT IN THE MIDDLE

51345 ENTRY$ = LEFT$ (ENTRY$,PLACE%Z — 1) + " " + MID$ (ENTRY$,PLACEZ)
51350 GOSUB 52130 : REM PRINT THE FIELD
51355 GOSUB 52070 : REM REPOSITION CURSOR
51360 RETURN

51365 REM

51370 REM ¥XXXXRAXKXERAKERRKKERRRKEKAR KR X KX

51375 REM

TEST POINT

Begin by entering some text on the line and moving the cursor into the
middle of the text. Now enter "F followed by some other letters. As each
character is entered, the text should split, with the right side sliding right
one place for each new character entered. The cursor should step right
one place. Press another control key—Ileft arrow, for example—and
make sure that the insert mode is turned off. Next, toggle insert mode
back on and verify that a second "F turns it off. Finally, move the cursor

to the front of the text and check that the insert mode works there.

Displaying a Character

After a valid key has been pressed, the following display subroutine will
display the character on the screen. If a character has been removed,

then the FILL$ character will be displayed.

47

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

48

52070 REM POSITION AND DISPLAY NORMAL

52075 REM

52077 VTAB ROW% : REM POSITION CURSOR

52080 POKE 36, (COL% + PLACE% — 1) : REM HTAB

52085 XX$ = MID$ (ENTRY$,PLACE%,1) : REM PRINT ONE LETTER

52090 IF XX$ = "" THEN XX$ = FILL$: REM IF NULL THEN MAKE IT A SPACE
52095 PRINT XX$;

52100 REM

52105 POKE 36, (COL% + PLACE% — 1) : REM REPOSITION THE CURSOR — HTAB
52110 RETURN

52115 REM

52120 REM ¥X¥XXXXXEXXXEXERK XK XXX XK R KRK AKX X

52125 REM

TEST POINT

The display subroutine is tested in conjunction with the character-accept
and display routine. RUN the program and press a key. This key’s charac-
ter should be displayed on the screen in a NORMAL video, and the cursor
should move one position to the right.

Erase to End of Line

This erase feature is very handy. You will frequently decide to change
everything to the right of the cursor, and the erase routine allows you to
do so in one keystroke. Erasing to the end of the line only requires a
LEFT$ command and then a redisplay of the field.

51630
51635
51640
51645
51650
51655
51660
51665
51670
51675

REM ERASE TO END OF LINE

REM

IF PLACE% = 1 THEN ENTRY$ = "":GOTO 51650: REM ERASE WHOLE LINE
ENTRY$ = LEFT$ (ENTRY$,PLACE%Z - 1)

GOSUB 52130 : REM PRINT THE FIELD
GOSUB 52000 : REM DISPLAY THE CURSOR
RETURN

REM

REM ¥¥XHKXAHEKKRKRKKKKRKHKKR KR KK KR KK KA KK

REM

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

TEST POINT

Enter some text and move the cursor left. Now enter "Y and everything to
the right of the cursor should disappear. Test this routine at the begin-
ning, the middle, and the end of the line.

The Escape Key
Striking the ESC (escape) key will cause the CTRL % flag to be set and the

line editor to return to the calling program. This feature is used exten-
sively later in the book.

USER INSTRUCTIONS

Whenever it is appropriate, we will include a sample set of instructions
that can be included in your user’s (operator’s) manual. We naturally are
assuming that every program that you write includes a user’s manual.
Portions of the user’s manual can be extracted and used as help files.

The line editor program allows you to enter and edit text. You can
move the cursor left and right, insert and delete characters anywhere on
the line, and request help from the computer.

The line editor will check every character that you enter and verify
that it is acceptable. For example, if the program is requesting a number,
then it will allow you to enter only numbers, not letters. When it wants a
yes or no response, it will only allow you to enter a Y or an N. Periods (.)
are displayed to illustrate the maximum length of the field. You cannot
enter text that will exceed the space shown.

Whenever you have any doubts about how you should respond to an
input, you can request help by pressing control Q (for question). If help is
available, then a message will be displayed for you. After you have read
the message, enter RETURN and the program will continue.

The following list summarizes the editing commands available.
Recall that a control character is entered by holding down the CTRL key
while entering the desired letter. For example, control A is activated by
holding down the CTRL key while striking the A key.

49

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

Control A Skip to the previous word.

Control D Delete this character and compress the line.
Control F Insert characters into the line.

Control N Skip to the end of the line.

Control Q HELP request at any time.

Control W Skip to the next word.

Control Y Erase to the end of the line.

Right arrow Move right one character.

Left arrow Move left one character.

When you are in the insert mode, you will keep inserting letters until
you enter any control or arrow key.

COMPLETE LINE EDITOR PROGRAM

The complete program listing for the line editor follows. It may look like a
formidable program, but if the remark statements were removed, the pro-
gram would be about 160 lines long. Considering what this routine does,
that length is not overly long.

10 REM

20 REM LINE EDITOR TEST ROUTINE

30 REM ASKS FOR INITIAL CONDITIONS THEN IT
40 REM USES THE LINE EDITOR.

50 REM

60 HOME

70 INPUT "ENTER MASK ";MASK$

80 INPUT "ENTER TEXT ";ENTRY$

90 INPUT "ENTER ROW ";ROW%

100 INPUT "ENTER COL ";COL%

110 HOME

120 GOSUB 50000 : REM THE LINE EDITOR

130 VTAB 20

140 PRINT

150 IF HELP% = 1 THEN PRINT "HELP REQUESTED"

50

160
170
180
190
200
210
220
230

50000
50005
50010
50015
50020
50025
50030
50035
50040
50045
50050
50055
50060
50065
50070
50075
50080
50085
50090
50095
50100
50105
50110
50115
50120
50125
50130
50135
50140
50145
50150
50155

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

PRINT

PRINT ">";ENTRY$; "<"

VTAB 24

INPUT "ENTER (CR) TO CONTINUE OR END TO EXIT ";A$
IF A3 <> "" THEN END

GOTO 60

REM

END

REM BASIC LINE EDITOR

REM

REM

REM THIS IS A BASIC LINE EDITOR

REM

REM THE PROGRAMMER CALLS IT USING THE FOLLOWING VARIABLES
REM

REM ROW% => SCREEN LINE NUMBER

REM COL% => SCREEN COLUMN NUMBER
REM ENTRY$ => TEXT TO BE EDITED

REM MASK$ => DATA TYPE TO BE ALLOWED

REM WHERE:

REM A = ALPHANUMERIC

REM # = NUMBER FIELD ONLY

REM Y = YES/NO FIELD

REM Q = HELP REQUEST OK, USE IN ANY CHARACTER

REM THE LENGTH OF MASK$ IS THE MAXIMUM LENGTH OF THE
REM INPUT STRING

REM

REM

PLACE% = 1 : REM SET THE STARTING POSITION
REM

FILLE = " " : REM DISPLAY DOTS

HELP%Z = 0 : REM CLEAR THE HELP FLAG
CTRL% = O : REM CLEAR THE EXIT FLAG
GOSUB 52130 : REM DISPLAY ENTRY$
GOSUB 50165 : REM EDIT THE STRING
FILL§ = " " : REM CLEAR THE SCREEN
GOSUB 52130 : REM DISPLAY ENTRY$
RETURN : REM GO BACK TO CALLER
REM

REM ¥XXXXXXXXXXXXXRXXX XXX KX

51

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

50160 REM

50165 REM EDIT THE ENTRY$ FIELD

50170 REM

50175 REM POSITION THE CURSOR

50180 REM

50185 VTAB ROW% : REM VERTICAL POSITION
50190 GOSUB 52000 : REM PRINT THE CHARACTER IN INVERSE
50195 REM

50200 REM ACCEPT A KEY FROM THE KEYBOARD

50205 REM

50210 KEY% = PEEK (49152) : REM TEST FOR INPUT
50215 IF KEY% < 128 THEN GOTO 50210 : REM LOOP UNTIL ENTRY
50220 REM

50225 REM IF HERE THEN A KEY PUSHED

50230 REM

50235 XX = PEEK (49168) : REM CLEAR KEYBOARD
50240 KEY% = KEY% - 128 : REM STRIP OFF FLAG BIT
50245 REM

50250 REM PROCESS THE KEY

50255 REM

50260 GOSUB 50295 : REM KEY% PROCESSOR

50265 IF HELP% > O THEN RETURN : REM HELP REQUESTED BY USER
50270 IF CTRL% > O THEN GOSUB 52070: RETURN : REM CONTROL KEY EXIT

50275 GOTO 50210 : REM GET THE NEXT KEY
50280 REM

50285 REM ¥¥XXXXRXXXXAXXRARXXXARKXRRKKRK

50290 REM

50295 REM TEST FOR CONTROL KEY

50300 REM

50305 IF KEY% < = 31 THEN GOSUB 51000: RETURN : REM PROCESS AND RETURN
50310 REM

50315 REM MUST BE AN ALPHANUMERIC

50320 REM

50325 REM TEST THE MASK TO DETERMINE DATA TYPE

50330 REM

50335 IF MID$ (MASK$,PLACE%,1) = "A" THEN GOSUB 50900: RETURN
50340 IF MID$ (MASK$,PLACE%,1) "#" THEN GOSUB 50390: RETURN
50345 IF MID$ (MASK$,PLACE%,1) "Y" THEN GOSUB 50440: RETURN

50355 REM
50360 REM BAD MASK CHARACTER
50365 REM

52

50370
50375
50380
50385
50390
50395
50400
50405
50410
50415
50420
50425
50430
50435
50440
50445
50450
50455
50460
50465
50900
50905
50910
50915
50922
50925
50926
50930
50932
50935

50936
50940
50945
50946
50950
50955
50960
50965
50970
50975

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

RETURN

REM

REM ¥ ¥XXXRXXAXXRREXRREX AR XXX RRKRRKRK

REM

REM ACCEPT A NUMBER

REM

REM TEST TO SEE IF IT IS A VALID NUMERIC TYPE OF CHARACTER
REM

IF (KEY% < 45) OR (KEY% > 57) THEN RETURN : REM BAD KEY

IF KEY% = 47 THEN RETURN : REM BAD KEY ALSO

GOSUB 50900 : REM GOOD KEY SO ACCEPT IT
RETURN

REM X¥X¥AXAKRXKXKRKA KR KR KKK KX KX KX K

REM

REM TEST FOR YES OR NO
IF (KEYZ < > 89) AND (KEY% < > 78) THEN RETURN : REM BAD KEY
GOSUB 50900 : REM ACCEPT IT
RETURN
REM ¥¥XXXEXEERXRAR R XXX XXRXRRARRKRHRK
REM
REM PRINT KEY% AND ADD TO ENTRY$
REM
IF INSERT% = 1 THEN GOSUB 51315: REM INSERT A SPACE
TXTSIZE% = LEN (ENTRY$) : REM MAKE SURE WE HAVE CORRECT TXTSIZE%
REM ADD TO END OF ENTRY
IF PLACE% > TXTSIZE% THEN ENTRY$ = ENTRY$ + CHR$ (KEY%): GOTO 50945
REM ADD AS FIRST CHARACTER
IF PLACE% = 1 THEN ENTRY$ = CHR$(KEY%) + MID$(ENTRY$,PLACE%Z + 1): GOTO 50945
REM ADD AS LAST CHARACTER
IF PLACE% = TXTSIZE% THEN
ENTRY$ = LEFT$(ENTRY$,PLACE% — 1) + CHR$(KEY%): GOTO 50945
REM ADD IN THE MIDDLE SOMEWHERE
ENTRY$ = LEFT$(ENTRY$,PLACE% — 1) + CHR$(KEY%) + MID$(ENTRY$,PLACEZ + 1)
TXTSIZE% = LEN (ENTRY$)
REM IF TOO BIG TRUNCATE IT
IF TXTSIZE% > MAXSIZE% THEN ENTRY$ = LEFT$ (ENTRY$,MAXSIZE%)
REM
REM NEED TO MOVE RIGHT ONE PLACE
REM
GOSUB 51425 : REM RIGHT ARROW
RETURN

53

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

54

50980
50985
50990
51000
51005
51010
51015
51020
51025
51030
51035
51040
51045
51050
51055

51060

51065
51070
51075
51080
51085
51090
51095
51100
51105
51110
51115
51120
51125
51130
51135
51140
51145
51150
o158
51160
51165
51170
51175
51180
51184

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

AXXXXXXXRXXXXXXXX XX KKK KKK KK

PROCESS A CONTROL KEY

EXIT KEYS SUCH AS RETURN SET CTRL%

Ap
AD

& i
AH
AN
"Q
Al
A
AT

=

> PREVIOUS

WORD

4 > DELETE THIS CHARACTER

6 > FILL WITH A SPACE

8 > LEFT ARRO
14 > SKIP TO E
17 > HELP REQU
21 > RIGHT ARR
23 > NEXT WORD
25 > ERASE TO

W
ND
EST
ow

END

IGNORE ALL OTHER KEYS

CTRL% =
IF KEY%
INSERT%
IF KEY%

REM

IF KEY%

REM

IF KEY%

REM

IF KEY%
REM CHECK HELP REQUEST
IF KEY% = 17 THEN HELP%

REM

IF KEY%

REM

IF KEY%

REM

IF KEY%

REM

IF KEY%
IF KEY%

o

Il

Il

6 THEN GOSUB 5
0

1 THEN GOSUB 5
4 THEN GOSUB 5
8 THEN GOSUB 5

13 THEN CTRL%

14 THEN GOSUB

21 THEN GOSUB

23 THEN GOSUB

25 THEN GOSUB
27 THEN CTRL%

: REM CLEAR EXIT FLAG

1280:
1555%
12905

1380:

RETURN : REM INSERT

: REM TURN INSERT OFF

REM PREVIOUS WORD

REM DELETE

REM LEFT ARROW

= 1: REM RETURN KEY

=,

51425
51475 ;

51630:
=29 ¢

: RETURN : REM HELP REQUEST

51680: REM GOTO END

REM RIGHT ARROW

REM NEXT WORD

REM ERASE TO END
RETURN : REM ESC

51185
51190
51195
51200
51205
51210
51215
51220
51225
51230
51235
51240

51245
51250
51255
51260
51265
51270
51275
51280
51285
51290
51295
51300
51305
51310
51315
51320
51325
51330
51335
51340
51345
51350
51355
51360
51365
51370
ILIFS

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

REM
RETURN
REM
REM %%¥X%XXRXXEXXAXXXRXX AKX XXX AKX XXX
REM
REM DELETE AND PACK
REM
TXTSIZE% = LEN (ENTRY$)
IF TXTSIZE% = O THEN RETURN : REM NOTHING TO DELETE
IF TXTSIZE% = 1 THEN ENTRY$ = "":PLACE% = 1:GOTO 51250: REM DELETE LINE
IF PLACE% = 1 THEN ENTRY$ = MID$ (ENTRY$,2): GOTO 51250
IF PLACE% > = TXTSIZE% THEN
ENTRY$ = LEFT$(ENTRY$,TXTSIZE%Z — 1) :PLACE% = PLACE% — 1:GOTO 51250
ENTRY$ = LEFT$ (ENTRY$,(PLACE% — 1)) + MID$ (ENTRY$,PLACE%Z + 1)
GOSUB 52130 : REM PRINT NEW STRING
GOSUB 52000 : REM PRINT INVERSE
RETURN
REM
REM XXXXXXEXXXXXEXRXX XXX AXXXXXXAXX
REM
REM TOGGLE THE INSERT MODE
REM
IF INSERT% = 1 THEN INSERT% = O: RETURN : REM TURN IT OFF
INSERT% = 1 : REM TURN IT ON
RETURN
REM ¥¥¥XXXXEXEXXXXXXXXEXXXX XXX R X XXX
REM
REM INSERT A CHARACTER
REM
REM
REM IS IT THE FIRST CHARACTER?
IF PLACE% = 1 THEN ENTRY$ = " " + ENTRY$: GOTO 51350
REM INSERT IN THE MIDDLE
ENTRY$ = LEFT$ (ENTRY$,PLACE% — 1) + " " + MID$ (ENTRY$,PLACE%)

GOSUB 52130 : REM PRINT THE FIELD
GOSUB 52070 : REM REPOSITION CURSOR
RETURN

REM

REM ¥¥¥X¥XAKXKXEXREXRK XXX R XRK KKK XK

REM

55

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

56

51380
51385
51390
51395
51400
51405
51410
51415
51420
51425
51430
51435
51440
51445
51450
51455
51460
51465
51470
51475
51480
51485
51490
51495
51500
51505
51510
51515
51520
51525
51530
51535
51540
51545
51550
51555
51560
51565
51570
51575
51580

REM LEFT ARROW

REM

GOSUB 52070 : REM DISPLAY NORMAL

IF PLACE% > 1 THEN PLACE% = PLACE% - 1: REM MOVE LEFT ONE
GOSUB 52000 : REM DISPLAY INVERSE
RETURN

REM

REM ¥ ¥¥XXAXXEXRRK AR KRR KR XXX XK XXX

REM

REM RIGHT ARROW

REM

IF MID$ (ENTRY$,PLACE%,1) = "" THEN RETURN
GOSUB 52070 : REM DISPLAY AS NORMAL
IF PLACE% < MAXSIZE% THEN PLACE% = PLACE%Z + 1
GOSUB 52000 : REM DISPLAY AS INVERSE
RETURN

REM

REM XXX XXXXEXRXKRAKRK KRR XRRRRK KRR ¥

REM

REM SKIP TO NEXT WORD

REM

REM

IF PLACE% = > TXTSIZE% THEN RETURN : REM ALREADY AT END
GOSUB 52070 : REM REMOVE CURSOR

PLACE% = PLACE% + 1: REM LOOK FOR FIRST SPACE

IF PLACE% = TXTSIZE% THEN GOTO 51530

IF MID$ (ENTRY$,PLACE%,1) < > " " THEN GOTO 51500: REM IS IT A SPACE?
PLACE% = PLACE% + 1: REM MOVE RIGHT ONE

IF PLACE% = TXTSIZE% THEN GOTO 51530

IF MID$ (ENTRY$,PLACE%,1) = " " THEN GOTO 51515: REM SKIP OVER SPACES

GOSUB 52000 : REM DISPLAY CURSOR

RETURN

REM

REM X¥XXXAXAXRKRKKKKKKR KK KKKKKK KKK X

REM

REM SKIP TO PREVIOUS WORD

REM

IF PLACE% = 1 THEN RETURN : REM AT THE FRONT ALREADY
GOSUB 52070 : REM REMOVE CURSOR

PLACE% = PLACE% — 1: REM LOOK FOR SPACE
IF PLACE% = 1 THEN GOTO 51610: REM FORCE MOVE AT LEAST ONE SPACE

51585
51590
51595
51600
51605
51610
51615
51620
51625
51630
51635
51640
51645
51650
51655
51660
51665
51670
51675
51680
51685
51690
51695
51700
51705
51710
51715
51720
51725
52000
52005
52010
52012
52015
52020
52025
52030
52035
52040
52045
52050

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

IF MID$(ENTRY$,PLACE%,1) = " " THEN GOTO 51575: REM SKIP OVER SPACES
PLACE% = PLACEZ — 1

IF PLACE% = 1 THEN GOTO 51610

IF MID$(ENTRY$,PLACE%,1) < > " " THEN GOTO 51590: REM IS IT A SPACE?
PLACE% = PLACE% + 1 : REM POSITION OVER FIRST LETTER

GOSUB 52000 : REM DISPLAY THE CURSOR

RETURN

REM

REM ¥¥XXXAXKXXAKKXRRRKKXRAR KKK KR KKK

REM ERASE TO END OF LINE

REM

IF PLACE% = 1 THEN ENTRY$ = "": GOTO 51650: REM ERASE WHOLE LINE
ENTRY$ = LEFT$ (ENTRY$,PLACEZ - 1)

GOSUB 52130 : REM PRINT THE FIELD
GOSUB 52000 : REM DISPLAY THE CURSOR
RETURN

REM

REM ¥XHXXEXHXKKKKKKKKKKKKAK KA KKK KK

REM

REM SKIP TO END OF LINE

REM

GOSUB 52070 : REM MOVE THE CURSOR

PLACE% = LEN (ENTRY$) + 1
IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%: REM DO NOT GO PAST END

GOSUB 52000 : REM SHOW THE CURSOR
RETURN

REM

REM X¥XXXXXAARRXXKKRXRRRRR KKK KKK KXXK

REM

REM PRINT CHARACTER IN INVERSE

REM THIS GIVES THE ILLUSION OF CURSOR MOVEMENT

REM

VTAB ROW% : REM POSITION CURSOR

POKE 36, (COL% + PLACE% — 1) : REM HTAB

INVERSE : REM REVERSE VIDEO

XX$ = MID$ (ENTRY$,PLACE%,1): REM MOVE FOR THE NEXT IF
IF XX$ = "" THEN XX$ = " ": REM IF NULL MAKE IT A SPACE
PRINT XX$; : REM PRINT THE INVERSE
NORMAL : REM RESTORE TO NORMAL VIDEO
POKE 36, (COL% + PLACE% — 1) : REM REPOSITION THE CURSOR — HTAB
RETURN

57

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lie

52055 REM
52060 REM %% XX XXXXKXKKKRXXXXXXXX XXX XXX KX
52065 REM
52070 REM POSITION AND DISPLAY NORMAL
52075 REM
52077 VTAB ROW% : REM POSITION CURSOR
52080 POKE 36, (COL% + PLACE% - 1) : REM HTAB
52085 XX$ = MID$ (ENTRY$,PLACE%,1) : REM PRINT ONE LETTER
52090 IF XX$ = ot THEN XX$ = FILL$: REM IF NULL THEN MAKE IT A SBPACE
52095 PRINT XX$;
52100 REM
52105 POKE 36, (COL% + PLACE% - 1) : REM REPOSITION THE CURSOR
52110 RETURN
52115 REM
52120 REM XX XXXXXXXXK XXX XK XXX XXX KKK KX X
52125 REM
52130 REM DISPLAY TEXT$
52135 REM FILL$ IS THE FILL CHARACTER
52140 REM TXTSIZE% IS THE LENGTH OF ENTRY$
52145 REM MAXSIZE% IS THE MAXIMUM ALLOWED LENGTH
52150 REM
52155 REM
52160 TXTSIZE% = LEN (ENTRY$) : REM HOW LONG IS THE CURRENT FIELD?
52165 MAXSIZE% = LEN (MASK$) : REM WHAT IS MAX LENGTH ALLOWED?
52170 REM
52175 REM IS ENTRY$ TOO LONG?
52180 REM
52185 IF TXTSIZE% > MAXSIZE% THEN
ENTRY$ = LEFT$ (ENTRY$,MAXSIZE%):TXTSIZE% = MAXSIZE%

52190 REM

52195 REM POSITION THE CURSOR

52200 REM

52205 VTAB ROW% : REM ROW POSITION
52210 POKE 36, COL% : REM COLUMN NUMBER — HTAB
52215 REM

52220 REM PRINT THE TEXT

52225 REM

52230 PRINT ENTRY$; : REM NO LINE FEED
52235 REM

52240 REM PRINT THE FILL CHARACTER

52245 REM

58

52250
52255
52260
52265
52270
52275
52280
52285
60000

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

IF TXTSIZE% = MAXSIZE% THEN RETURN : REM NO FILL$ TO PRINT
FOR XX = TXTSIZE% TO MAXSIZE% - 1

PRINT FILLS;
NEXT XX
RETURN

REM

: REM ALL DONE

REM ¥X%XXXXXXEXXXXXEXXXK XX XXX XX KKK

REM
RETURN

: REM UNIVERSAL RETURN FOR TESTING

59

CHAPTER 3

SCREEN
TEXT EDITOR

INTRODUCTION

In the previous chapter we created a line editor capable of editing a
single line of text. Often, however, it is necessary to enter and edit a
paragraph or more of text. In this chapter we will develop a screen text
editor that will enable us to enter and edit many pages of text. This pro-
gram will be developed in two parts. The first part is the actual text edi-
tor that can be added to your own programs. The second part provides
disk input/output capability. By combining both parts, you will have a
stand-alone, text-editing and program development system.

Before we present part 1 of the program, we will discuss the design
and the features of the text editor and the complete text editor.

61

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

62

Design

This program is going to be a multipurpose text editor. Not only do we
want to be able to edit text as part of a program, but we also want to de-
velop a stand-alone text editor that can be used for writing letters or com-
puter programs. Thus our program supports both purposes.

Another design feature of the program is the output to the printer
portion of the program, which may require special commands to be
passed depending on the type of printer used. One of the most popular
makes, the Epson, requires the code CONTROL I 80 N to be sent to the
printer to initialize it before printing more than 40 columns (many other
makes also have this requirement). The ‘80"’ can be any number between
1 and 255 or the limit of the printer, whichever is smaller. The most com-
mon value used is 80. Many special features such as different character
fonts and bold printing are possible. See your printer manual for the spe-
cial codes it requires.

In part 2 we will add to the text editor, giving the complete editor a
command area. In this area the user is given the option to print, load,
save, auto number, or quit.

Building the Program

The heart of the text editor is the line editor developed in Chapter 2. To
build the screen text editor, start with a copy of the line editor program
from Chapter 2 and add the additional program lines presented in this
chapter. Be sure to make backups at each stage of entry and each time
you successfully get through a test point.

User Features

To edit several pages of text, the user must be able to move the cursor up
and down a line or a page of text at a time and insert or delete lines.
These features are incorporated in the text editor.

Also, you may have noticed that your Apple II screen is only 40 char-
acters wide (this limitation also applies to the Apple Ile with the
80-column card deactivated or off), but most printers are 80 or more

CHAPTER 3 SCREEN TEXT EDITOR

characters wide. Since it would be very nice to be able to print a docu-
ment wider than 40 characters, we include in our program a line con-
tinuation (wraparound) feature that allows us to combine several lines
into one. However, in entering text, the user will have to enter a CR at the
end of each line; the editor will not do wraparound on the screen.

For a stand-alone text editor we also need to be able to send text to
the printer, to load and save text files to the disk, or to quit and forget
everything entered. These features are included in our program and are
presented in detail in the part 2 discussion. The following list gives the
commands, and their explanations, for these additional features. The
commands consist of a complete word followed, in some commands, by a
disk file name or number. The command words are as follows:

LOAD FN Load disk file called FN.

CATALOG Display directory.

SAVE FN Save text to disk file called FN.

DONE FN Save text and then QUIT.

PACK FN Concatenate and save the text file and then
QUIT.

AUTO # Turn auto line numbering on or off.

AUTO Turn auto line numbering off.

EDIT # Edit the text starting at line number #.

EDIT or ESC key Return to current page in text editor.

PRINT Print text file.

FORMAT Pack and print text file.

QUIT Return to BASIC and clear the array.

For example, to load and then edit a text file called SALES LETTER,
the user would enter

LOAD SALES LETTER
After the file is loaded, the user could enter either
EDIT or EDIT 1 or ESC

to begin editing on line 1.

63

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

Programmer Features

So that the text editor can be used as a program development tool, the
only additional feature needed is auto line numbering, which we have
included.

From a programming standpoint all text is kept in a string array. The
calling program must tell the editor how large the array is, what line to
begin editing on, and the number of the last array element that contains a
valid text field.

For part 2, the complete text editor, the programmer must decide
how many lines the LINE$ array should contain. In a 48K system 1000
lines are a good choice. This choice will allow the average line to be
about 24 characters long. The same choice applies to the 64K Apple //e,
since the additional memory is not available for use by a BASIC program.

PART 1: TEXT EDITOR PROGRAM

64

The flowchart for the basic text editor is shown in Fig. 3.1. This flow-
chart says that the calling program defines the starting conditions; then
the text editor displays a screen of text and edits the first line of text.
After the line is edited, it tests to see if the user is done. If the user is not
done, the text editor will process the last command. To leave the line edi-
tor, the user has to enter either a control character (a RETURN is control
M), or an ESCape. Depending on the key entered, the text editor will
either move up/down a line/page of text or insert/delete a line.

The program corresponding to the flowchart in Fig. 3.1 (page 66) is
as follows:

41000 REM TEXT EDITOR

41005 REM

41010 REM VARIABLE DEFINITION

41015 REM LROW% STARTING ROW NUMBER

41020 REM LCOL% STARTING COL NUMBER

41025 REM LINE$() TEXT ARRAY

41030 REM LAST% DIMENSIONS OF TEXT ARRAY
41035 REM MLINE% LARGEST LINE USED IN ARRAY
41040 REM LINEZ CURRENT LINE BEING EDITED
41045 REM FIRST% LINE AT TOP OF SCREEN

41050
41055
41060
41065
41070
41075
41080
41085
41090

41095
41100
41105
41110
41115

41120
41125
41130

CHAPTER 3 SCREEN TEXT EDITOR

FILLE =™ *® : REM DEFINE THE FILL CHARACTER
GOSUB 41800 : REM DISPLAY THE SCREEN

ROW% = LROW% : REM START AT LAST ROW

COL% = LCOL% : REM START AT LAST COL

REM

REM TOP OF EDIT LOOP

CTIRL% = 0: REM CLEAR THE EXIT FLAG

ENTRY$ = LINE$(LINE%): REM PUT CURRENT LINE INTO LINE EDITOR

IF PLACE% > LEN (ENTRY$) THEN PLACE% = LEN (ENTRY$) + 1: REM
ASSIGN PLACE% HERE

IF PLACE% = O THEN PLACE% = 1: REM NULL LINE

GOSUB 50165: REM EDIT THE TEXT BUT DO NOT REDISPLAY ENTRY$

LINE$(LINE%) = ENTRY$: REM SAVE THE EDITED LINE

IF KEY%Z = 27 THEN LROW% = ROW%:LCOL% = COL%: RETURN : REM BACK TO CALLER

ON CTRL% GOSUB 41130,41165,41215,41635,41675,
41735,41490,41560,41435,41320,41370 : REM PROCESS KEY

GOTO 41075

REM ¥XXXXXKXKERAKKRKK KKK KKK K KRR KK KRR KKK

REM

The following subsections describe various aspects of the text editor
program.

TEST POINT

Enter the following program lines. They will be used later to test the
screen editor.

100
110
120
130
140
150
160
170
180
190
200
500

REM
REM SCREEN EDITOR TEST ROUTINE

REM

DIM LINE$(50) REM DEFINE SCREEN ARRAY
LAST% = 50 REM NUMBER OF TEXT LINES
MLINE%Z = 0 REM INITIALIZE VARIABLES
ANUM% =
LROW% =
LCOLZ =
LINE% =
FIRST% = 1
REM

RO

65

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

FIG. 3.1 Text editor flowchart

Calling program sets
starting conditions

A

Display the first screen
and get a line to edit

»
>

\

Edit a line from
the array

Process the control key
used to exit line

v

Get next line

510
520
530
590

REM LEAVE A GAP HERE

REM

GOSUB 41000 : REM CALL THE EDITOR
END

Explanation of Variables

The text editor program requires only a few more variables than the line
editor. LROW % (line 41060) and LCOL% (line 41065) are used to set the
starting position on the screen. The first time the text editor is called,
these variables should be set to 1.

CHAPTER 3 SCREEN TEXT EDITOR

The text to be edited is contained in array LINE$() (see line 41080).
The calling program must either clear (equate to nulls) or fill in the array
with text before it calls the text editor. LAST% is the dimension of the
array LINES. For example, LINE$ is dimensioned by the statement DIM
LINE$(LAST %), where LAST% is the number of lines in the array.

DIM The DIMension statement is used to allocate space for an array.

EXAMPLE:

DIM A(12)

This command provides for elements in the array A from position 0
through 12.

MLINE% is the number of the last used array element. For instance,
if the array is dimensioned to 100, but only the first 23 lines contain infor-
mation, then MLINE% is set equal to 23 and LAST % is equal to 100. If
the array is cleared, then MLINE % is set equal to 1.

LINE% is the number of the line currently being edited. The calling
program must set it equal to 1 if there is nothing in the array or if editing
is to begin on line 1, the first line. If editing is not to begin on the first line,
then LINE% is set equal to the line number to be used. For example, if
you wish to begin editing on line 25, you set LINE% equal to 25.

FIRST % is the number of the line to appear at the top of the screen.
Normally, FIRST% will start with the same value as LINE%.

ANUM% (line 160 of the test routine) will be used to contain the
current auto numbering incremental value. If it is equal to 0, then auto
numbering will be turned off.

Explanation of the Program
The text editor routine displays the current screen, keeps track of the

cursor’s position, and processes the exiting control characters. The text
editor enters the line editor routine at line 50170 (see line 41100 of the

67

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

68

text editor program). This GOSUB is used because the text editor does not
need to have the line redisplayed before or after editing.

PLACE% (lines 41085 and 41090) is used by the line editor to
mark the current character being edited. In the text editor PLACE% is
set equal to 1 for a RETURN but not for a line feed or a down arrow.
Setting PLACE% equal to 1 will cause the cursor to start at the begin-
ning of the line. If the user desires to use the up and down arrows, it
looks nicer and is usually more convenient if the cursor stays in the
current column position as the cursor is moved up and down through
the lines of text, rather than return to the beginning of the line. If
PLACE% is larger than the length of the line the cursor is moving to,
PLACE% is set equal to the length of the new line so that editing may
begin at the end of the line.

Explanation of Screen Display Subroutine

The screen display subroutine (line 41055, GOSUB 41800) clears the
screen by using the HOME command and then uses a FOR-NEXT loop to
display the text array, starting with text line FIRST %.

HOME The HOME command clears the text area and moves the cursor
to the upper left corner of the screen.

The program for the screen display routine is as follows:

41800 REM DISPLAY THE CURRENT SCREEN

41805 REM

41810 HOME : REM CLEAR THE SCREEN

41815 FOR X = 1 TO 24

41820 Z =FIRSTZ + X - 1

41825 POKE 36, 1 : REM POSITION THE CURSOR — HTAB
41830 VTAB X

41835 PRINT LINE$(Z);

41840 NEXT X

41845 RETURN

41850 REM ¥¥¥XXAXXXKERRKERXXERXXKER XX XXK AKX
41855 REM

CHAPTER 3 SCREEN TEXT EDITOR

TEST POINT

Before testing the screen display routine, you will need to add a tempo-
rary program line:

41057 END
Since we do not want to proceed past this subroutine, this temporary line

will cause execution to stop after the screen is displayed. If you now
enter

RUN (CR)
the screen should clear and the program will stop with the cursor on the
last line.

If this routine worked so far, add some more temporary lines:

400 FOR X =1 TO 50
410 LINE$(X) = "THIS IS LINE NUMBER "+STR$(X)
420 NEXT X

These lines fill the array with text.
Enter

RUN (CR)
and you should now see the text for lines 2 through 24 displayed. The text
for line 1 scrolled off the top of the screen because of the END statement
on line 41057.

After the screen display section is tested, line 41057 is no longer
needed, so delete it and add

41107 END

You can now test the line editor as part of the screen editor. Enter

RUN (CR)

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

and the screen should clear, the text in the first 24 lines should be dis-

played, and the cursor should be left on line 1 over the L. You should now

be able to edit this line. The program will stop after you enter (CR).
After you are satisfied that everything is working, delete line 41107.

SCREEN EDITOR CONTROL CHARACTER COMMANDS

70

The screen text editor requires several new control character commands
to be added to the line editor routine. These characters will set the
CTRL% variable. Recall that if CTRL% is not 0, the line editor will return
to the caller. After the text editor saves the edited line, it will process the
exit character.

The following new characters and commands are implemented:

A B (control B) Insert a blank line into array.

A E (control E) Jump to last page.

A T (control I) Tab over 8 spaces or add spaces to a line.
A J (control]) Down arrow, move down one line.
A K (control K) Up arrow, move up one line.

A M (control M) RETURN, move down one line.

A0 (control O) Jump to first page of text.

A P (control P) Concatenate two lines of text.

AR (control R) Scroll up one full page of text.
AT (control T) Scroll down one full page of text.
Az (control Z) Delete a line and compress array.
Esc (ESCape) All done. Exit the text editor.

The tests for these commands are inserted directly into the line editor
program from Chapter 2 (see the program lines that follow). They must be
inserted manually. After the line editor exits, the text editor interprets
the CTRL% character and performs the requested action.

The program lines for inserting the new control characters are as
follows:

CHAPTER 3 SCREEN TEXT EDITOR

50347 IF MID$(MASK$,PLACE%,1) = "N" THEN
GOSUB 41270: RETURN : REM 50347 AUTO NUMBER

51102 IF KEY% = 2 THEN CTRL%Z = 8 : REM 51102 "B INSERT LINE
51112 IF KEY% = 5 THEN CTRL% = 9 : REM 51112 "E LAST PAGE
51122 IF KEY% = 9 THEN CTRL% = 10 : REM 51122 I TAB

51124 IF KEY% = 10 THEN CTRL% = 2 : REM 51124 AJ LINE FEED
51126 IF KEY% = 11 THEN CTRL% = 3 : REM 51126 "K UP ARROW
51132 IF KEY% = 15 THEN CTRL% = 4 : REM 51132 A0 FIRST PAGE
51134 IF KEY%Z = 16 THEN CTRL% = 11 : REM 51134 "P CONCATENATE
51142 IF KEY% = 18 THEN CTRL% = 5 : REM 51142 "R UP PAGE
51157 IF KEY% = 20 THEN CTRL% = 6 : REM 51157 T DOWN PAGE
51182 IF KEY% = 26 THEN CTRL% = 7 : REM 51182 "Z DELETE LINE

In the following subsections we will enter and test the new
commands.

Inserting a Blank Line

Control B ("B) is used to insert a blank line. To insert a blank line, we split
the array at the current line number and move all the text on higher line
numbers down one line. After the array is moved, the current line be-
comes the blank line, MLINE% is incremented, and the screen is redis-
played.

The following routine is used to insert a blank line:

41560 REM INSERT A BLANK LINE

41565 REM

41570 IF MLINE% < LAST% THEN MLINE% = MLINEZ + 1

41575 Y = LINE% : REM LINE COUNTER

41580 IF LINE% = 1 THEN Y = 2 : REM AT TOP OF TEXT

41585 FOR X = MLINE% TO Y STEP — 1

41590 LINE$(X) = LINE$(X - 1): REM MOVE TEXT DOWN A LINE
41595 NEXT X

41600 LINE$(LINEZ) = "" : REM CLEAR THE OLD LINE
41605 GOSUB 41800 : REM DISPLAY SCREEN

41610 RETURN

71

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

72

41435
41440
41445
41450
41455
41460
41465
41470
41475
41480
41485

41615 REM
41620 REM %X¥XXAXXAKEEXERRARK XK RK KRR RRK KRR KK ¥
41625 REM
41630 REM
TEST POINT

There are two special boundary conditions that must be tested for at this
point. These occur when inserting on either the first or the last line of the
array.

Enter RUN (CR) and the cursor will appear on line 1. You can test the
first boundary condition by entering "B. The screen should clear and all
the lines be redisplayed, but shifted down one line. The first line should
be blank.

The testing of the second boundary condition will be done later, after
the cursor can be moved to the bottom of the text.

Jump to the Last Page

Control E (“E) is used to jump to the last page. When you are editing a
document, it is very convenient to be able to jump directly to the end of
the document. You must test to verify that there is more than one page of
text; otherwise, you simply adjust the pointers for the last page.

The following subroutine allows you to jump to the last page of text:

REM JUMP TO LAST PAGE

REM

FIRST% = MLINE%Z - 23 : REM FIND THE LINE AT THE TOP OF THE SCREEN
IF FIRST% < 1 THEN FIRST% = 1: REM CANNOT HAVE LINE LESS THAN 1

LINE% = FIRST%

ROW%Z = 1

COLE = 1

GOSUB 41800 : REM DISPLAY THE SCREEN
RETURN

REM ¥XXXKXKXKXKXXKAKR KA KK KK KR KKK KKK KKK KK

REM

CHAPTER 3 SCREEN TEXT EDITOR

TEST POINT

Execute the program and enter "E. The last page of the text should be dis-
played and the cursor should be on the top line of the screen.

Tab Stops

A control I is the traditional TAB key on a computer terminal, and the de-
fault tabs are set at eight spaces each.

Tab stops are a convenient feature to include in the text editor. Their
use in program development provides increased readability. In a letter
they provide the ability to easily indent text.

The TAB key will move the cursor right to the next tab stop, every
eight characters (this is the default value), if there is already text on the
line. However, if we are moving the cursor past the end of the text on the
line, we must insert spaces into the text line as we TAB.

As an option, this feature could be added directly to the line editor. If
you choose to do so, you must modify the line feed routine for the con-
tinuation character since it currently uses the TAB routine to indent the
next line.

The TAB routine is as follows:

41320 REM TAB
41325 REM
41330 PLACE% = (INT (PLACE% / 8) + 1) * 8: REM SLIDE THE CURSOR RIGHT
41332 IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZEZ%
41335 IF PLACE% < = LEN (LINE$(LINE%)) THEN
RETURN : REM WITHIN CURRENT FIELD
41340 FOR X = LEN (LINE$(LINE%)) TO PLACEZ - 1
41345 LINE$(LINE%) = LINE$(LINEZ) + " ": REM ADD SPACES TO THE END
41350 NEXT X
41355 RETURN
41360 REM ¥¥XAXXAXKXKRAXRXXXAXRXXRKKR KKK
41365 REM

73

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

74

TEST POINT

At this point you will do two tests. First, enter "I on line 1, and the cursor
should move over to the eighth column. Since the line contains text, no
blanks will be inserted. Next, move the cursor to the front of the line and
then delete all of the text by using the delete-to-end-of-line command.
Now enter "I, and eight spaces should be inserted and the cursor posi-
tioned on column 8.

Moving Down a Line

Two different keys can be used to move down a line: "] (line feed) or
RETURN. The line feed commmand will keep the cursor in the same col-
umn on the screen. The RETURN acts like a carriage return on a type-
writer and will move the cursor to the first character of the next line.

To move down a line, we increment both LINE% and ROW % by one.
However, we must also test a number of boundary conditions. LINE %
cannot be larger than LAST %, since LAST% is the array dimension. If
LINE% becomes larger than MLINE% (the bottom of the array), then
MLINE % must be incremented. Next, we test the line we are leaving for
continuation characters. If there is a continuation character and the next
line is blank, editing will begin at the first tab stop on the next line. This
feature is especially convenient for the user if a BASIC program is being
written. Indenting the line will make it stand out from the rest of the text.
We do not indent if the line is not blank because a nonblank line means
that the user is editing existing text. Finally, we test the line we are
leaving to see whether it is the bottom line. If we want to go down one
more line, the screen must be moved up. The screen is moved up by call-
ing the page scroll subroutine.

The following routine moves the text down a line:

41135 REM CARRIAGE RETURN

41140 REM
41145 PLACE% = 1
41150 GOSUB 41170 : REM LINE FEED

41155 RETURN
41160 REM ¥XXXXAXEXARKXRREXRRKERARKXRRK KRR K KRR K KKK KX ¥

41165 REM

CHAPTER 3 SCREEN TEXT EDITOR

41170 REM LINE FEED

41175 REM

41180 IF LINE% = LAST% THEN RETURN : REM MAX NO MORE LINES LEFT

41185 LINE% = LINE% + 1

41190 IF LINE% > MLINE% THEN MLINE%

41195 ROW%Z = ROW% + 1

41200 IF ROW% > 24 THEN ROW% = 24:X = 1:LINE% = LINE% — 1: GOSUB 41755

41205 IF (RIGHT$ (ENTRY$,1) = "&") AND (LEN (LINE$(LINE%)) = O) THEN
PLACE% = 0: GOSUB 41320: REM TAB IN ON NEXT LINE

41210 RETURN ,

4]_215 REM X¥XXXXXREXXXXXEREXXRX KRR XXX X XX KRR XXX

41220 REM

LINE%: REM INC THE LARGEST LINE COUNTER

TEST POINT

After the program for moving down a line has been typed in, enter RUN
(CR). Once the new screen is displayed, enter another (CR) and the cursor
should move to line 2. Now edit line 2 and enter *J. If there is no text on
line 3, the cursor drops down to line 3 and moves to the first column. If
there is text on the following lines, then the cursor drops down to the next
line, staying in the same column. The page-scrolling test will have to be
done after you have entered that routine (which is presented in a later
subsection).

Moving Up a Line

The control K (*K) is used to move up one line. To move up a line, we
decrement both LINE% and ROW % by one. As in moving down a line, we
must also test a number of boundary conditions. LINE% must be greater
than 0. If ROW % becomes equal to 0, the screen must be rolled down a
line. Rolling down a line is done by telling the page scroll subroutine to
move up one line.

The following routine moves the text up a line:

41225 REM UP ARROW

41230 REM

41235 IF LINE% = 1 THEN RETURN : REM AT TOP ALREADY
41240 LINE% = LINEZ - 1

75

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

76

41245 ROW%Z = ROW% - 1

41250 IF ROW% < 1 THEN ROW% = 1:LINE% = LINE% + 1:X = 1: GOSUB 41695
41255 RETURN

41260 REM

41265 REM ¥XX¥AEXXKEEXXXEEXXKKRRKK KRR KRR KRR KR KKK

Instead of scrolling just one line up or down, you may wish to scroll
half a page or 12 lines. You will have to adjust both ROW % and LINE %
to do so. Some users may be annoyed that the screen refreshes every time
it scrolls one line. Others may be annoyed by the cursor jumping from ei-
ther the top or the bottom row to the middle of the screen. Your imple-
mentation is a matter of personal preference.

TEST POINT

Execute the program we have presented so far, and after the screen has
displayed, enter a couple of carriage returns to move the cursor down the
screen. Now enter "K and move back up one line. Edit this line and enter
another "K. Next, enter a (CR) and return to the line you just edited. It
should contain the text you edited. Before proceeding to the next section,
check to make sure everything is working correctly. Move the cursor up
and down several times and edit several lines. Also, try some of the previ-
ous commands, such as line insert and jump to the last page.

Jump to the Home Page

To jump to the original or home page, you strike control O (*O). This fea-
ture comes in handy, for example, when you are proofreading a docu-
ment. Jumping to the first page is done by setting LINE%, ROW %,
COL%, and FIRST% equal to 1 and then displaying the text.

The program for returning to the home page is as follows:

41635 REM GOTO THE HOME PAGE

41640 REM

41645 GOSUB 41860 : REM RESET THE POINTERS
41650 GOSUB 41800 : REM SHOW THE SCREEN
41655 RETURN : REM A OK

41660 REM

41665

41670 REM
TEST POINT

CHAPTER 3 SCREEN TEXT EDITOR

REM %XXXXXXXAXKKEEXKEKXXRX KK KKK RR KKK KKK KRR KX

To test the routine for jumping to the home page enter "E to jump to the
last page. Enter "O to jump back to the first page, and test some of the
previous commands to be sure they are still working correctly.

Concatenate Two Lines

We use control P ("P) to concatenate (combine) two lines of text into one.
The routine that follows will combine the two lines and then delete the
second line from the array.

If we are already on the last line, there is nothing to concate-
nate—this condition is the only special one. If the new line is too long, it
will be truncated by the line editor.

The following program combines two lines:

REM AT THE END

LINE$(LINE%) = LINE$(LINE%) + LINE$(LINE4 + 1): REM PACK THE LINES

MOVE LINE UP ONE

CLEAR THE LAST LINE
REDUCE MAX LINE BY ONE
DISPLAY SCREEN

41370 REM PACK TWO LINES

41375 REM

41380 IF LINE% = MLINE% THEN RETURN :

41385

41390 IF LINE% = MLINE% THEN GOTO 41410: REM LAST LINE
41395 FOR X = LINE% + 1 TO MLINE% — 1

41400 LINE$(X) = LINE$(X + 1) : REM

41405 NEXT X

41410 LINE$(MLINEZ) = " : REM

41415 MLINE% = MLINE% - 1 : REM

41420 GOSUB 41800 : REM
41425 RETURN

41430 REM ¥X¥AXXXKKRXXRARXKRKKRKKK KKK RKKRRK
TEST POINT

To test the concatenating feature, enter "P on the first line. The screen
should clear and the new line 1 should contain the original line 1 with the

77

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

78

original line 2. The rest of the text lines will move up one line. If you jump
to the last line, you can test the boundary condition of concatenating a
blank line.

Scroll Up a Page

Control R ("R) is used to move up one page of text at a time. In the routine
that follows, FIRST% and LINE% are decremented, and the text window
(the space occupied by text) is moved up. For this routine we need to test
for the top of the document. If the user is already on the top page of text,
we will move them to the top row on the screen.

The scrolling-up routine is as follows:

41675 REM SCROLL UP A PAGE
41680 REM
41685 X = 24 : REM JUMP A FULL PAGE
41690 REM ENTRY POINT FOR ROLL UP
41695 IF FIRST% < = X THEN GOSUB 41860 :
ROW% = 1: GOSUB 41800: RETURN : REM JUMP TO TOP OF FIRST PAGE

41700 FIRST% = FIRST% - X : REM MOVE THE TOP LINE

41705 LINE% = LINE% - X : REM CHANGE THE ARRAY POINTER
41710 GOSUB 41800 : REM DISPLAY THE SCREEN

41715 RETURN

41720 REM

41725 REM X¥¥XXEXXEXKRARRKRRKRRKKRRRKRRKRARKRRK KRR KRR KK KRR
41730 REM

TEST POINT

Enter "E and jump to the last page. Then use "R to scroll up one page. Test
all of the functions as you did for moving the cursor up one line. Verify
that when "K is entered on the top line of the screen, the text is scrolled
down one line.

Scroll Down a Page

Control T ("T) is used to move down a page of text. Scrolling down is just
the opposite of scrolling up. Scrolling down is used whenever a document
is longer than 24 lines, since a display longer than 24 lines cannot be

CHAPTER 3 SCREEN TEXT EDITOR

shown on one screen page. So in large documents it becomes necessary to
be able to jump up and down through the text 24 lines at a time.

The scroll-down subroutine must increment FIRST% and LINE%,
then redisplay the screen. The boundary conditions occur at the bottom
line and the last page. The variable X is used to set the number of lines to
be scrolled. For a full page, scroll X is set equal to 24. The single-line
scroll sets X equal to 1, and a half-page scroll sets X equal to 12. If the
cursor is already on the last page of text, then it will move to the last line;
otherwise, it will remain on the same row on the screen and the text will
move one page.

The scrolling-down routine is as follows:

41735 REM SCROLL DOWN A PAGE
41740 REM
41745 X = 24 : REM JUMP A FULL PAGE
41750 REM ENTRY POINT FOR ROLL DOWN
41755 IF MLINE% < = 24 THEN LINE% = MLINEZ :
ROW% = MLINE%: RETURN : REM ON FIRST PAGE
41760 IF FIRST% + X > MLINE%Z THEN FIRST% = MLINEZ — 23 :
LINE% = MLINE%:ROW% = 24: GOTO 41775: REM BOTTOM
41765 FIRST% = FIRST% + X
41770 LINE% = LINEZ + X

41775 GOSUB 41800 : REM DISPLAY THE SCREEN
41780 RETURN
41785 REM
41790 REM ¥¥XXXXXKHHKHHHHERKKKKKKRHHHRRRHHHK KKK K
41795 REM
TEST POINT

Use T to scroll down a page. Then perform the same tests you performed
for scrolling up a page.

Deleting a Line

The control Z (*Z) command is used to delete a line of text. To delete a
line, we split the array at the current line number, and all the text on the
higher line numbers is moved up one line. MLINE% is decremented, and
the last line is cleared.

79

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

41490
41495
41500
41505

41510
41515
41520
41525
41530
41535
41540
41545
41550
41555

The program for deleting a line is as follows:

REM DELETE A LINE
REM
IF MLINE% = 1 THEN LINE$(1) = "": GOTO 41535: REM ONLY ONE LINE
IF LINE% = MLINE% THEN
ROW% = ROW%Z — 1:LINE% = LINE% — 1: GOTO 41525: REM LAST LINE IN TEXT
FOR X = LINE% TO MLINE%Z - 1
LINE$(X) = LINE$(X + 1): REM MOVE THE LINES UP
NEXT X
LINE$(MLINEZ) = " : REM CLEAR BOTTOM LINE
IF MLINE% > 1 THEN MLINE% = MLINE%Z — 1
GOSUB 41800 : REM DISPLAY SCREEN
RETURN

REM
REM %%XXXEXKRXXEXAXK XXX XXX XXK XXX XXX X XXX X

REM

TEST POINT

Special boundary conditions occur on the first and last lines of the pro-
gram, so special tests are performed by the subroutine for deleting a line
to detect these conditions.

Enter RUN (CR) and the cursor will appear on the first line. Enter "Z
and the screen should clear and show what appears to be lines 2 through
25 but are now really lines 1 through 24. Now enter "E and jump to the
bottom of the text. Enter “Z and the last line should disappear.

The Escape Key

The ESC (escape) key is used to exit the text editor subroutine and return
the user to the calling program (this will be the command area of part 2).

SUMMARY OF PART 1

80

We have now created a simple text editor. This subroutine can be used
as part of a larger program. There are countless applications where such
a text editor can be used.

CHAPTER 3 SCREEN TEXT EDITOR

In part 2 of this chapter we will add the routine needed to make this
program a full stand-alone screen text editor.

PART 2: COMPLETE TEXT EDITOR PROGRAM

The previous subroutines will edit text. It is up to the program that calls
the text-editing subroutines to load or save the information edited by the
user. If we add these routines to the text editor, we will have a stand-
alone screen text editor. We will call this program the complete text edi-
tor.

The flowchart for the complete text editor is shown in Fig. 3.2. When
a valid command is entered, the editor will execute the command and re-
turn to the command screen to await another command.

FIG. 3.2 Flowchart for the complete text editor

Program
start

Display the
command screen

<

y
Accept a command

this a valid

command? No

LOAD

SAVE
Perform

CATALOG
requested

. EDIT

function A

Line number

PRINT

81

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

COMMAND DISPLAY AND PROCESSOR

82

The rather lengthy program listing that follows is the command display
and processor routine. The display gives information on the current sta-
tus of the text being edited and a HELP screen illustrating the available
commands.

Before the display is shown, a FRE() command is executed. If there
is a lot of text in the editor, this command can take several seconds to
execute. The FRE() command is valuable for two reasons: First, it tells
the user how much memory is available to accept additional text; second,
it does some housekeeping of the memory for you.

FRE(0) The FRE command returns the amount of memory available to
the user in bytes. FRE(0) performs the housekeeping task of clearing
unused values from memory, freeing that space for current use.

The number of lines used and the auto line numbering values, if any,
are shown in the command area of the program. Additionally, an ex-
planation of the command is displayed.

The line editor is used to accept a command from the user. LEFTS$ is
used in the command routine to determine if a valid command has been
entered. We have chosen to use full words and not abbreviations for the
commands.

After a command is executed, the command screen is redisplayed
and another command is accepted. Notice in the listing that follows
that some of the commands return to line 40045 and some to line
40040. If the command affects the amount of free memory, then an-
other FRE() command is executed; otherwise, no FRE() command is
needed. As mentioned above, the FRE() command can take some time
to execute if there is a lot of text, so we do not want to use it more
often than necessary.

The complete text editor line numbering begins with number 40000.
For this complete editor, change the value on lines 130 and 140 in the
screen editor test routine from 50 to 1000. Also, delete lines 500 through
540 from the test routine.

The program listing for the command display and processor is as fol-
lows:

CHAPTER 3 SCREEN TEXT EDITOR

40000 REM EDITOR * COMPLETE TEXT EDITOR WITH COMMAND AREA

40005 REM

40010 REM USES THE LINE EDITOR WITH A FEW ADDITIONAL EXIT KEYS
40015 REM

40020 REM COMMAND AREA ROUTINE

40025 REM

40030 MLINE% = 1 : REM SET THE MAX LINE COUNTER
40035 GOSUB 41860 : REM CLEAR VARIABLES

40040 FX = FRE (0) : REM CLEAR THE MEMORY

40045 HOME

40050 PRINT "EDITOR COMMAND AREA FREE ";FX: REM TITLE AND FREE MEMORY
40055 PRINT "LINES USED ";MLINE%; " ON LINE ";LINEZ%;
40060 IF ANUM%Z > O THEN PRINT " AUTO ";ANUM%;

40065 PRINT : PRINT

40070 PRINT ">";

40075 PRINT

40080 PRINT

40085 PRINT "LOAD NAME LOAD A TEXT FILE"

40090 PRINT "CATALOG DISPLAY DIRECTORY"

40095 PRINT

40100 PRINT "EDIT ## EDIT LINE NUMBER"

40105 PRINT "ESC EDIT CURRENT LINE NUMBER"
40110 PRINT "EDIT EDIT CURRENT LINE NUMBER"
40115 PRINT

40120 PRINT "AUTO ## AUTO LINE NUMBER"

40125 PRINT "AUTO TURN OFF LINE NUMBERING"
40130 PRINT

40135 PRINT "SAVE NAME SAVE THE FILE"

40140 PRINT "DONE NAME SAVE AND EXIT TO BASIC"
40145 PRINT "PACK NAME PACK, SAVE AND EXIT"

40150 PRINT

40155 PRINT "PRINT PRINT TEXT FILE"

40160 PRINT "FORMAT PACK AND PRINT TEXT FILE"
40165 PRINT

40170 PRINT "QUIT EXIT TO BASIC"

40175 MASK$ = "NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT
40180 ENTRY$ wh : REM CLEAR IT

40185 ROW% = 4 : REM COMMAND INPUT LINE
40190 COL%Z = 3
40195 PLACEZ = 1 : REM EDITOR SETS PLACE%

40200 FILLg =" "

83

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

40205
40210
40215
40220
40225
40230
40235
40240
40245
40250
40255
40260

40265
40270
40275
40280

84

GOSUB 50120 : REM ENTER LINE EDITOR AT HELP% = O LINE
REM IF E THEN CALL THE EDITOR
IF KEY% = 27 THEN ENTRY$ = "EDIT": REM ESC MEANS EDIT TEXT
IF LEFT$ (ENTRY$,4) = "AUTO" THEN GOSUB 40285: REM AUTO LINE NUMBER
IF LEFT$ (ENTRY$,4) = "PACK" THEN GOSUB 40545: HOME : END : REM PACK
IF LEFT$ (ENTRY$,4) = "EDIT" THEN GOSUB 40335: GOTO 40040: REM EDIT
IF LEFT$ (ENTRY$,4) = "DONE" THEN GOTO 40510: REM SAVE AND END
IF LEFT$ (ENTRY3$,4) = "LOAD" THEN GOSUB 40395: GOTO 40040: REM LOAD
IF LEFT$ (ENTRY$,7) = "CATALOG"™ THEN GOSUB 40745: REM DISK CATALOG
IF LEFT$ (ENTRY$,4) = "SAVE" THEN GOSUB 40595: REM SAVE THE TEXT
IF LEFT$ (ENTRY$,5) = "PRINT" THEN PR# 1:PRT% = 1: GOSUB 40595: REM PRINT
IF LEFT$ (ENTRY$,6) = "FORMAT" THEN

PR# 1:PRT% = 1: GOSUB 40545: HOME : END : REM PACK PRINT
IF LEFT$ (ENTRY$,4) = "QUIT" THEN HOME : END : REM CLEAR AND QUIT

GOTO 40045 : REM TRY AGAIN
REM ¥¥XXXAKAKRKRKKKKAKKKRKA KKK KKK KRR KR KR KKK
REM

The following routine is used to initialize several variables:

41860 REM CLEAR EVERYTHING

41865 REM

41870 LINEZ = 1 : REM CURRENT LINE NUMBER
41875 FIRST% = 1 : REM TOP LINE ON THE SCREEN
41880 LROWZ = 1 : REM START ON FIRST LINE
41885 LCOL% = 1

41890 ROW% = 1

41895 COL% = 1

41900 RETURN

41905 REM ¥¥X¥X¥¥AXXXXXKXXERRXRRRXKKK

Various aspects of the command display routine are described in the
subsections that follow.

TEST POINT

After RUN (CR) is entered, the screen should clear, the command area
and the HELP screen should be displayed, and the cursor should be posi-
tioned on the fourth line next to the > symbol. The editor is waiting for a

CHAPTER 3 SCREEN TEXT EDITOR

command. The only command that can be executed at this time is QUIT.
Try it to verify that at least this command works. As you can see from line
40265, QUIT clears the screen and stops execution.

The Edit Command

The EDIT command, or the ESC key, is used to toggle from the command
area to the text editor. The ESC key is used to be consistent with using the
ESC key to exit the text editor. The EDIT command has two modes: with
or without a line number. If the user knows which line number is to be
edited, then EDIT ## is used, where ## is the line to be edited. If the cur-
rent text window is desired, the user does not enter a line number.

The program detects which method is used by checking the length of
the command entered. If it is four characters long, then only EDIT has
been entered. If it is longer than four characters, a number must be ex-
tracted from ENTRY$. This number is extracted by using a VAL() com-
mand. If the value (line number) does not fall within the range of line num-
bers available, then the user is returned to the command area and gets to
try again.

VAL() The VAL() command searches the assigned string for a numeri-
cal value and returns that value. The search stops when the first
nonnumerical value is encountered.

EXAMPLE

5000 HAZEL$ = "AGE 12"

5100 CAT$ = VAL(MID$(HAZEL$,4))
5200 PRINT CAT$

RUN

12

In this example we search the string HAZEL with VAL(), starting at
character position 4 (use of MID$), to avoid the search from stopping
when it encounters the first nonnumerical value.

85

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

86

40335
40340
40345
40350
40355
40360
40365
40370
40375
40380
40385
40390

The edit routine is as follows:

REM EDIT THE TEXT
REM

IF LEN (ENTRY$) = 4 THEN GOSUB 41000: RETURN : REM START AT CURRENT LINE
FIRST% = VAL (MID$ (ENTRY$,5)): REM LINE NUMBER USER WANTS TO EDIT

IF (FIRST% < 1) THEN FIRST% = 1

LINE% = FIRST%

LROW% = 1 : REM START AT TOP LINE
LCOL%Z = 1 : REM START IN FIRST COLUMN
GOSUB 41000 : REM TEXT EDITOR

RETURN

REM ¥%¥XXXXXRKHRKKKERKRKKERRKK KKK KR KKK

REM

TEST POINT

After the edit routine is entered, you will be able to move back and forth
between the command area and the editor. Either enter EDIT (CR) or hit
the ESC key. The screen should clear and you should be able to enter and
edit text. Use the ESC key when you wish to exit the editor and return to
the command area. Once in the command area, hit the ESC key again to
be sure that the editor returns the correct display. You are rapidly ap-
proaching an operational text-editing system.

Text-Saving Subroutine

Another important capability in editing is saving the text that has been
entered or edited. Text is saved on disk in a sequential text file. But be-
fore a sequential text file is saved to disk, any old file with the same name
must be erased. If the old text file is not erased, the new text file will be
written over the old text file. If the new file is not as long as the old file,
part of the old file will remain at the end of the new file.

The DELETE command is used to delete or erase a file. However, a
two-line command sequence is needed and not simply a DELETE com-
mand. The sequence that must be used is

PRINT DSK$; "OPEN SALES LETTER"
PRINT DSK$; "DELETE SALES LETTER"

CHAPTER 3 SCREEN TEXT EDITOR

An attempt to delete a file that does not exist will generate an error mes-
sage, and the program will abort. If the file is opened before a DELETE is
issued, then you have ensured that there is a file to delete. In other
words, if the file was there, it was OPENed; but if the file was not there,
then the OPEN command created a new file. In either case we have a file
that can be deleted, and we do not have to be concerned about getting a
FILE NOT FOUND error.

DELETE The DELETE command removes a file name from the disk di-
rectory, and you will no longer have access to the file. The DELETE
command must be preceded by a CHR$(4) in the program.

EXAMPLE

5000 PRINT CHR$(4) "DELETE LETTER"
or

5000 A3 = "FRED"
5100 PRINT CHR$(4); "DELETE ";A$

These two examples simply show how you would delete files from
within a program. The first example deletes a specific file named
LETTER. The second example deletes whatever file has been as-
signed to A$.

OPEN The OPEN command is used in conjunction with the READ and
WRITE commands to create and retrieve sequential text files. It allo-
cates a buffer in memory for the text file, and it allows the system to
read or write from the beginning of the file.

As mentioned above, if a file with the name you selected does not
exist, then the OPEN command will automatically add it to the disk cata-
log. Once we are sure that a file is deleted, we OPEN it and begin saving
the text. If this process seems complex, it is. But it is part of the Apple
operating system, and we must work within it.

Text is sent to the disk by using a FOR-NEXT loop and PRINTing the
text after a WRITE command has been issued, as follows:

PRINT DSK$; "WRITE SALES LETTER"

87

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

88

WRITE The WRITE command causes all subsequent PRINT statements
to print to the disk. WRITE is in effect until an error, an INPUT state-
ment, or a CHR$(4) occurs. A WRITE command must be preceded by
a CHR$(4).

EXAMPLE
5000 PRINT CHR$(4); "WRITE MAY SALES"

or

5000 A$ = "JUNE WHEAT"
5100 PRINT CHR$(4); "WRITE ";A$

The first example shows how a specific file can be written to disk
(SALES). The second example shows how any file can be assigned
the value of AS.

The text-saving routine that follows allows text to be saved in two
different formats. In the first format the text is saved exactly as it looks
on the screen. In the second format the continuation symbols are re-
moved and the text is saved in packed or concatenated form. For the sec-
ond format the array is processed looking for & symbols as the last char-
acter of a line. When an & is found, the current line and the next line are
concatenated and MLINE% is decremented. After the entire array is
packed, it is written to disk by using the same save routine that is used by
the first save format.

The & symbol is used as the continuation line symbol within the text
editor. When you are typing a lengthy piece of text within the editor, use
an & as the last character on a line. The PACK command later removes
the & symbols and saves the text.

For the reading of a sequential file without error, the number of lines
in the file must be known. Therefore the number of lines (MLINE%) is
printed as the first line in the file.

When two lines are concatenated, all leading spaces in the second
line are removed. The leading spaces are there to indent the text and
make it more legible. If you want spaces at this point in the line, they must
be added in front of the & symbol.

CHAPTER 3 SCREEN TEXT EDITOR

Once all the text is written to the disk, it is necessary to CLOSE the
file. Closing the file must be done to ensure that the text has actually been
written to the disk. That is, as a line is PRINTed, the Apple does not im-
mediately put it on the disk. The text first goes to a temporary storage lo-
cation in memory (commonly called a BUFFER). This buffer is 256 bytes
(characters) long; it is the same size as one sector on the disk. Rather than
write the text out at every PRINT command, the Apple waits until it has a
full 256-byte sector before it writes. This feature is included for efficien-
cy. It is done automatically as data is sent to or retrieved from the disk.

What happens if the buffer is not completely filled and nothing else
is to be sent to the disk? Well, the computer will wait for you to finish fill-
ing the buffer, not realizing that you are done. If you turn off the com-
puter, that last partial buffer will never make it to the disk. Hence we
have the CLOSE command. It tells the computer that you are done using
that disk file and to write the buffer to disk.

CLOSE The CLOSE command deallocates the buffer and, in the WRITE
mode, forces the remaining bytes in the buffer to disk. CLOSE must
follow a CHR$(4). There are two modes: with and without a file
name. With a file name, only that file is closed. Without a file name
all files are closed.

EXAMPLE

5000 PRINT CHR$(4);"CLOSE LETTER"
or

5000 A3 = "MAY SALES"
5100 PRINT CHR$(4); "CLOSE ";A$

or
5000 PRINT CHR$(4); "CLOSE"
In these three examples we see that the CLOSE command must al-

ways be preceded by a CHR$(4), the disk command, and that we do
not have to be file-specific, although we may find it convenient to be.

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

The following subroutine saves text on a disk:

40510 REM SAVE TEXT AND END

40515 REM

40520 GOSUB 40595 : REM SAVE THE TEXT
40525 HOME

40530 END

40535 REM ¥¥XXXEKREKEKRXKRKERERKRRRRKR KRR KKAKR
40540 REM

40545 REM CONCATENATE AND SAVE FILE

40550 REM

40555 Y=0

40560 FOR X = 1 TO MLINE%

40565 Y =Y +1

40570 LINE$(Y) = LINE$(X) : REM PACK THE ARRAY

40575 IF RIGHT$ (LINE$(X),1) = "&" THEN GOSUB 40700: GOTO 40580
40580 NEXT X

40585 MLINE% = Y : REM NEW MAX LINE COUNT
40590 REM

40595 REM SAVE THE TEXT

40600 REM

40605 DSK$ = CHR$ (4) : REM SET FOR DISK IO
40610 PRINT

40615 ENTRY$ = MID$ (ENTRYS,5) : REM GET THE FILE NAME

40620 IF PRT% > O THEN GOTO 40650: REM PRINT IT DON'T WRITE TO DISK

40625 PRINT DSK$; "OPEN ";ENTRY$

40630 PRINT DSK$; "DELETE ";ENTRY$: REM ERASE IT

40635 PRINT DSK$; "OPEN ";ENTRY$: REM OPEN A NEW CLEAN FILE

40640 PRINT DSK$; "WRITE ";ENTRY$

40645 PRINT MLINE% : REM NUMBER OF LINES

40650 FOR X = 1 TO MLINE%

40655 IF PRT% > O THEN
PRINT LINE$(X): REM SEND IT TO THE PRINTER NO QUOTES

40660 IF PRT% = O THEN PRINT CHR$(34);LINE$(X);CHR$(34): REM SEND IT TO
THE DISK

40665 NEXT X

40670 IF PRT% > O THEN PRT% = O: PRINT CHR$(12):PR#O: RETURN : REM SET
CRT AND FORM FEED

40675 PRINT DSK$; "CLOSE ";ENTRY$

40680 PRINT

40685 RETURN

90

CHAPTER 3 SCREEN TEXT EDITOR

40695 REM
40700 REM CONCATENATE IT
40705 IF MID$ (LINE$(X + 1),1,1) = " " THEN

LINE$(X + 1) = MID$ (LINE$(X + 1),2): GOTO 40705: REM STRIP SPACES
40710 XX = LEN (LINE$(Y)) - 1
40715 LINE$(Y) = LEFT$ (LINE$(Y),XX) + LINE$(X + 1): REM STRIP '&' AND PACK
40720 X=X +1
40725 IF RIGHT$ (LINE$(Y),1) = "&" THEN GOTO 40700: REM CONTINUE PACKING
40730 RETURN

40735 REM
40740 REM ¥X¥XXXXXXRRXRRKRKKERKRRKAKRAKRRRRR KR KK KKK

TEST POINT

This test is the first part of a two-part test. (The second part occurs after
the next subsection.) Edit some text, and then save it by entering SAVE
TEST TEXT (CR). Next, execute the save subroutine to see if TEST TEXT

was saved.

Text-Loading Subroutine

Text is saved as a sequential text file by using a PRINT statement. In con-
trast, an INPUT command is used to load the text into the editor.

The Apple II uses the same commands for reading and writing to the
disk and the screen. For the computer to know that you really want the
data to go to or come from the disk, you must use CHR$(4), control D, in
front of the disk command. For convenience, instead of typing CHR$(4)
every time we have a disk command in our programs, we set DSK$ equal
to CHR$(4).

To load a text file, we use a READ command, such as

PRINT DSK$; "READ SALES LETTER"
While the READ command is in effect, all INPUT statements will receive

their data from the disk and not the keyboard. The READ command is in
effect until another CHR$(4) is encountered.

91

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

92

READ The READ command is used to allow the INPUT command or the
GET command to retrieve data from a sequential text file one field at
a time.

The following routine loads text into the editor:

40395 REM LOAD A TEXT FILE

40400 REM

40405 DSK$ = CHR$ (4) : REM SET FOR DISK IO

40410 PRINT

40415 ENTRY$ = MID$ (ENTRYS,5)

40420 IF LEN (ENTRY$) = O THEN RETURN : REM THE USER FORGOT THE NAME
40425 PRINT DSK$; "OPEN ";ENTRY$

40430 PRINT DSK$; "READ ";ENTRY$

40435 INPUT X : REM NUMBER OF LINES

40440 REM

40445 FORY =1 TO X

40450 Z = LINE% + Y — 1: REM START INSERT AT THIS LINE

40455 INPUT LINE$(Z): REM READ A LINE

40460 NEXT Y

40465 PRINT : REM TO CLEAR EVERYTHING

40470 PRINT DSK$; "CLOSE ";ENTRY$

40475 IF MLINE% < Z THEN MLINE% = Z : REM SET THE UPPER LIMIT
40480 RETURN

40485 REM

40490 REM

40495 REM XXXXXXXXKXXKXRXKXXKKXXK
40500 REM

40505 REM

TEST POINT

The test here is to reload the file just saved in the previous test point. To
be sure that all the variables are cleared, enter QUIT, RUN the program,
and then enter LOAD TEST TEXT (CR). Depress the ESC key, and the
screen should display the text you previously saved. If it does not, deter-
mine whether the error occurred in the load or the save routine. Check
the save routine first.

CHAPTER 3 SCREEN TEXT EDITOR

Auto Line Numbering

Auto line numbering is a convenience feature for editing BASIC pro-
grams with the editor. The routine consists of two sections: the switch
section, which turns the line-numbering feature on and off, and the ac-
tual line-numbering routine.

When the AUTO command is entered without a number or with the
number 0, then line numbering will be turned off. Otherwise, line num-
bering will begin with the line number entered.

When line numbering is turned on, the editor calls the numbering
routine with every key (see line 50347 in the program for inserting control
characters). The numbering routine tests to see if a space was entered
(ASCII value 32) as the first character. If a space was not entered or if
numbering is turned off, the key will be accepted as normal and the rou-
tine will return to the caller. If a space is entered and line numbering is
on, a line is created by using the current line number. Next, the line num-
ber is incremented. We prefer to increment by five, but you can select
any value. It is not advisable to increment by one unless you write error-
free programs.

A new MASKS$ character, N, has been added to support auto num-
bering. The screen editor’s MASK$ is defined only once (on line 40175 in
the command display routine). There are a number of different ways to
implement this MASK$ feature, but we believe that the method we have
used is the most understandable and straightforward.

The routine for auto line numbering is as follows:

40285 REM SET THE AUTO NUMBER SWITCH

40290 REM FLIP ITS VALUE

40295 REM

40300 TXTSIZE% = LEN (ENTRY$)

40305 IF TXTSIZE% = 4 THEN ANUM% = O: RETURN : REM TURN OFF AUTO NUM
40310 ENTRY$ = MID$ (ENTRY$,5) : REM GET THE VALUE

40315 ANUM%Z = VAL (ENTRY$)

40320 RETURN

40325 REM ¥XEXXAEXKEXXEXXEXK KX AKX XA KKK XXX XX XXX X XXX

40330 REM

41270 REM NUMBER
41275 IF KEY% < > 32 THEN GOSUB 50900: RETURN

93

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

94

41280 IF ANUM% = O THEN GOSUB 50900: RETURN

41285 ENTRY$ = STR$ (ANUMZ) + " "

41290 ANUM%Z = ANUM% + 5

41295 PLACE% = LEN (ENTRY$)

41300 GOSUB 52130 : REM PRINT ENTRY$
41305 GOSUB 52000 : REM CURSOR DISPLAY

41310 RETURN
41315 REM ¥X¥¥XXXXAXRXRKEX XK ERE XK R XK XK XK XK KRXK

TEST POINT

In the command area, turn auto line numbering on by using the command
AUTO 100 (CR)

Hit the ESC key to move to the editor. Once in the editor, hit the space
bar. The number 100 should appear and the cursor should be positioned
at the first tab stop. Enter some text and a (CR). On the second line, hit the
space bar again. The number 105 should appear with the cursor at the
first tab stop.

To turn auto line numbering off, return to the command area and
enter

AUTO (CR)

Return to the editor and verify that it has turned off.

Catalog

There is nothing more annoying than being in a program and discovering
that you have forgotten the name of a file or the specific diskette that is in
the disk drive. The CATALOG command saves you time and frustration
because it eliminates the need to exit the program to do a CATALOG.
This feature is user friendly. Since in our editor we use everything the
user enters in ENTRY$ as a disk command, this feature can be used to
catalog any diskette. For example, CATALOG D2 entered as ENTRY$ will
print a catalog of disk 2 to the screen.

CHAPTER 3 SCREEN TEXT EDITOR

CATALOG The CATALOG command displays the directory of the files
on diskette. When used in a program, it must be preceded by a
CHR$(4).

EXAMPLE

5000 PRINT CHR$(4); "CATALOG"
or
5000 PRINT CHR$(4); "CATALOG D2"

These examples illustrate the use of the CATALOG command from a
program. As shown, the command must be preceded by a CHR$(4),
the disk command.

The INPUT command at the end of the routine that follows is pro-
vided to allow the user time to read the last group of file names.
The catalog routine is as follows:

40745 REM CATALOG DISK

40750 REM

40755 HOME : REM CLEAR SCREEN

40760 DSK$ = CHR$ (4)

40765 PRINT

40770 PRINT DSK$;ENTRY$: REM ENTRY$ CONTAINS FULL REFERENCE
40775 PRINT

40780 PRINT

40785 INPUT "ENTER RETURN TO CONTINUE";ENTRY$: REM PAUSE AT BOTTOM

40790 RETURN
40795 REM ¥¥XXXXRKKRKXRKERRKRRKRKXAKKR KKK KAKK

40800 REM

TEST POINT

Type in catalog (CR) from the command area. Drive one should activate,
and the directory should appear on the screen. The catalog routine is the
end of the text editor program. To be sure that nothing has been acciden-

95

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

tally changed during entry, go back and test every feature and verify that
the program works properly.

If everything has tested satisfactorily so far, delete lines 100-590
and replace them with the following lines:

100 LAST% = 1000: REM NUMBER OF LINES OF TEXT
110 DIM LINE$(LAST%): REM THE TEXT ARRAY
120 REM

These lines are necessary for executable code in the future.

ENHANCEMENTS

The screen text editor is very useful for program development and for
creating help files and letters. It should be used to enter the programs for
the subsequent chapters. Enhancements can be made either by imple-
menting more commands in the command mode or by using the remaining
control characters in the text editor itself. By looking at some of the word
processors on the market, you may find additional features to add. Re-
member, however, that as more features are added, the amount of mem-
ory available for text becomes smaller, so the size of your largest possible
document shrinks.

MERGING PROGRAMS BY USING EXEC

96

Working your way through the rest of the book will become much easier.
Now you can use the editor, which you just typed in and debugged, for the
entry of all the subsequent programs.

Keep in mind that the files you type in with the editor are saved as
text files. To load a program saved as a text file, use the command EXEC
(file name). EXEC loads a text file and executes it as a program. During
an EXEC the Apple treats each line of the text file as if it were being
typed in from the keyboard. In this manner the text is converted to pro-
gram format (it can be saved as an Applesoft file now).

CHAPTER 3 SCREEN TEXT EDITOR

If you used continuation symbols in your text, then you must save the
file by using the PACK command to strip out the continuation symbols.
When using PACK, remember to use a file name different from the one
you used with SAVE; otherwise, you will erase the original unpacked text
file. Next, this packed text file can be EXECed; the DOS SAVE command
is used to save the file as an Applesoft file.

Two text files can be merged together by EXECing first one and then
the other into memory (they are loaded sequentially) and then saving
them to disk under a new name—thus giving you a new, contiguous pro-
gram. These merging techniques will see a lot of use in the coming chap-
ters and in your own programming as you write programs and add pieces
of others to new programs.

As a text file is being EXECed, the Apple prints a | symbol for each
line accepted. Occasionally, a SYNTAX ERROR message will be printed
on the screen. This error means that the Apple has encountered an illegal
command and that this line was not accepted. You will have to correct
the line by comparing a listing of the original text file with the accepted
program listing. Remember, the Apple treats every line of the EXECed
text file as though it were typed directly from the keyboard. When you en-
ter a bad program line from the keyboard, the Apple gives you a SYNTAX
ERROR; therefore it will give the same message when a bad line is
EXECed.

Be aware that EXECing a file into memory will cause it to merge with
anything that is already present in memory—Ilike your HELLO program.
It is a good idea to type NEW before EXECing a file into memory.

USER INSTRUCTIONS

The user instructions presented here are included for two reasons. First,
they will help you understand the text editor program and its capabili-
ties. Second, they should be part of the documentation you prepare for
any program you write that incorporates the text editor.

The following sections cover entry and editing of text, using the com-
mand area, creating new documents, and saving, loading, merging, and
printing documents.

97

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lie

Entering and Editing Text in the Text Editor

With the text editor you are able to enter and edit text. You may move the
cursor up or down from line to line or page to page. You can insert blank
lines or delete lines anywhere in the text, and you can enter lines longer

than the screen width.

The text editor uses all the commands of the line editor plus several
additional control keys. The newly added keys and their functions are as
follows:

"B
E
T
i)
"X (control K) Up arrow, move up one line.

(control B) Insert a blank line into array.
(
(
(
(
"M (control M) RETURN, move down one line.
(
(
(
(
(
(

control E) Jump to last page.
control I) Tab over 8 spaces or add spaces to line.
control J) Down arrow, move down one line.

"0 (control O) Jump to first page of text.

"P (control P) Concatenate two lines of text.
AR
A
Az
ESC

control R) Scroll up one full page of text.
control T) Scroll down one full page of text.
control Z) Delete a line and compress array.
ESCape) All done. Exit the text editor.

Command Area

In addition to being able to enter and edit text, the screen editor is capa-
ble of loading and saving text to the disk or sending it to the printer. The
commands consist of a complete word followed, in some commands, by a
disk file name or number. The command words are as follows:

LOAD FN Load the disk file called FN.
CATALOG Display the disk directory.
AUTO # Turn auto line numbering on or off.

98

CHAPTER 3 SCREEN TEXT EDITOR

AUTO Turn auto line numbering off.

EDIT # Edit the text starting at line number #.

EDIT or ESC key Return to the current page in the text editor.
SAVE FN Save text to disk file called FN.

DONE FN Save text and then QUIT.

PACK FN Concatenate, save text file, and then quit.
PRINT Print the text file.

FORMAT Pack and print the text file.

QUIT Return to BASIC and clear the array.

Creating a New Document
To enter a new document, you simply enter either
EDIT 1 or EDIT or ESC

while in the command mode. When the cursor reaches the bottom of the
screen, the text will scroll up a line so that you may continue editing with-
out interruption. Also, if you are on the top row of the screen and going
up, the text scrolls down a line until you reach the first line of text.

When you finish editing text, enter ESC to return to the command
area.

Saving a Document

There are three different ways to save text. First, you can use the SAVE
FN command, where FN is the disk file name of your choice. This com-
mand will save the current text file and return you to the command area.
Second, DONE FN will save the text file and return you to BASIC. Finally,
PACK FN will concatenate all the continuation lines and save the con-
catenated file. Once completed, PACK will return you to BASIC.

Here are some examples of how to use these commands:

BASIC BUSINESS SUBROUTINES FOR THE APPLE Il AND lle

100

SAVE LETTER TO FRED
SAVE MAILING LIST

DONE EDITOR PROGRAM
DONE PRICES

PACK LETTER TO FRED PACKED
PACK PACKED EDITOR PROGRAM

All the files saved to disk are called TEXT FILES. They are identified by a
T in front of them when you do a catalog.

Loading an Existing Document
An existing document is loaded by using the LOAD FN command. For
example, to load and then edit an existing text file called PARTS LIST,
you enter

LOAD PARTS LIST
After th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>